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Introduction 
 

This book contains lecture notes and projects for our course Scientific 
Modeling and Simulation. This is an interdisciplinary course straddling the 
boundaries between mathematical modeling, numerical methods, and modern 
object-oriented computer programming. Our course is project-driven; we take 
realistic problems, model them, discuss appropriate numerical methods, and 
then create a simulation of the problem using Microsoft Visual C++ that takes full 
advantage of our computer’s graphical capabilities. 
 

This course was taught four times between 1999 and 2003. This book is 
designed as a reference for the instructor, though it can be adapted for use as a 
textbook. 
 

Our course is a one semester course, and is organized around a sequence 
of three projects. Each time the course was taught we introduced some new 
projects, so this book actually contains eight projects. Thus, this book contains far 
more material than could be covered in a single semester. Further, not every 
topic was covered every semester; for example the material on timers (Chapter 
17) was used only once. Below is a graph of the dependencies of one chapter on 
another; dependencies marked with a dashed arrow are optional. For example, 
adaptive methods are not required for the HIV dynamics project, but they can be 
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used. Further, the baseball project can be given without first introducing 
graphics, or it can come afterwards, at the instructor’s discretion. 

 
The prerequisites for our course are Calculus 1 and 2, together with 

Introduction to Computer Science I, which is an introduction to programming in 
C++ up to classes. 

 
The authors would like to thank the National Science Foundation, who 

supported this work through the Course, Curriculum, and Laboratory 
Improvement program, under grant DUE 9952625. We would also like to thank 
Dr. Teri Jo Murphy from the University of Oklahoma and Dr. Tad Watanabe from 
Penn State University for all of the work that they did to help us evaluate the 
effectiveness of our course. We would also like to thank Sam Houston who set up 
and maintained our lab for these past four years. 
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Dialog Based Programming 
The Calculator 

Section 1: Creating the Skeleton 
In this section we describe how to use Microsoft Visual Studio to create a dialog 
based windows program that acts as a simple calculator. In particular, we shall 
use the MFC AppWizard to create a functioning skeleton program, to which we 
will add our own functionality. 
 
We begin by creating the skeleton using the AppWizard. From Visual C++, select 
File, then New. You will obtain a dialog box like the one below. 

 
Figure 1: The MFC AppWizard 

For this project, we select MFC AppWizard. Select a working directory and give 
the project a descriptive name. Note that, unless overridden, the project name 
will be used in the names of many of the classes that the AppWizard will 
generate. In our example, we shall call our project “Calculator”.   
 
There are three options for an MFC AppWizard program- 

o Single document 
o Multiple document 
o Dialog based 

In these lecture notes, we shall focus exclusively on dialog based programs, in no 
small part because of their relative simplicity.  
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Figure 2: Select a dialog based program 

In step 2, uncheck the box for the About box, and retain the remainder of the 
setting in their default state. Here you also have the option of changing the title of 
the main dialog box; however it is a simple matter to change this later. The 
default values in step 3 are suitable for our purposes, so leave those set as they 
are. Finally, in step 4 we see the names of the classes that will be constructed for 
us. Because our project is called Calculator, the classes are CCalculatorDlg 
and CCalculatorApp; we shall leave these names. Once we select Finish, the 
skeleton of our program will be created. 
 
When this process is completed, you should be presented with a view like Figure 
3. Before we continue working on the program, let us examine some of the 
features of Visual C++ and see how they can help us.  
 
On the left side of the screen is a browsing tree with three tabs. The first tab 
shows the classes in the program, together with their associated variables and 
methods. Entries marked with  are classes, so in Figure 3, we see the two 
classes CCalculatorDlg and CCalculatorApp. Entries marked  are 
methods, while entries marked  are variables. Methods or variables that are 
protected are indicated by , while private ones are indicated by .  Double-
clicking on the name of a class brings up the header file for that class; double-
clicking on a variable brings up the header file at the point where that variable 
was declared; double-clicking on a method brings up the source file at the point 
where that method is implemented. 
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Figure 3: Our skeleton program 

In the resource tab, we have a tree with all of the resources that the program 
possesses. Examples of resources are dialog boxes, icons, menus, toolbars, and 
string tables. Each resource has an associated ID, usually consisting of all capital 
letters. Our skeleton program has three resources- a dialog box 
IDD_CALCULATOR_DIALOG, an icon IDR_MAINFRAME, and version information 
VS_VERSION_INFO.  We refer to these resources in our code by referring to the 
appropriate ID when needed. 
 
The last tab lets us view the files that are used in the current project. The files are 
sorted by type- source files, header files, and resource files. Our program contains 
four source files, four header files, two resource files, and a readme.txt file. The 
last of these summarizes each of the files that the AppWizard has created for us. 
 
The bulk of the screen is taken up by an editor. When editing source code, or 
header files, it acts as a text editor. When editing a dialog box, as shown in Figure 
3, it acts as a graphical editor. The floating toolbar on the right in Figure 3 lets 
you add various components to the dialog box; we shall discuss this in more 
detail later. 

Class View 

Resource View File View 

Build Mini-Bar 
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Section 2: Compiling and Running the Program 
Now that we have examined the structure that the AppWizard has provided for 
us, we would like to compile and run the program. To compile a source file, first 
open it for editing. Then, from the build menu select compile. You can also use 
the shortcut Ctrl+F7, or select the appropriate icon from the build mini-bar. To 
create the executable file, we need to build the application (F7); if the build 
process hangs, we can stop the build (Ctrl+Break). To execute the program, 
choose execute (Ctrl+F5). If the program has not been compiled and built, this 
command will tell you that files are out of date or do not exist; you can then build 
them before running the program. We debug our application by selecting Go (F5) 
and stop its execution at programmer defined breakpoints (F9). 
 

If we compile and run our skeleton program, we see that our program displays a 
dialog box with an OK button, a Cancel button, and the text “TODO: Place dialog 
controls here.” The buttons work, but they simply cause the program to exit.

Section 3: Event Driven Programming 
Now that our program skeleton has been created and is running, we can ask the 
question- How does our program actually function?  
 
We notice that our program contains only one global variable- theApp, of type 
CCalculatorApp. This class is derived from the class CWinApp and contains 
the basic structure needed for a windows program. When the program runs, this 
object is created; it then runs the InitInstance() member function. The code 
for that function can be broken up into four distinct steps: 
 

BOOL CCalculatorApp::InitInstance() 
{ 
 AfxEnableControlContainer(); 
 
#ifdef _AFXDLL 
 Enable3dControls();    
#else 
 Enable3dControlsStatic();  
#endif 
 
 

1 

Compile 
Ctrl+F7 

Build 
F7 

Stop Build 
Ctrl+Break 

Execute 
Ctrl+F5 

Go 
F5 

Insert/Remove Breakpoint 
F9 

Figure 4: The build mini-bar 
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 CCalculatorDlg dlg; 
 m_pMainWnd = &dlg; 
 
  
 

int nResponse = dlg.DoModal(); 
 if (nResponse == IDOK) 
 { 
  // TODO: Place code here to handle when the dialog is 
  //  dismissed with OK 
 } 
 else if (nResponse == IDCANCEL) 
 { 
  // TODO: Place code here to handle when the dialog is 
  //  dismissed with Cancel 
 } 
 
  

return FALSE; 
 
} 
 

 
The first step of the code is to handle basic initialization. More interesting is step 
2, where an instance of the class CCalculatorDlg is created; a pointer to that 
instance is saved as m_pMainWnd. The class CCalculatorDlg is derived from 
the base class CDialog; one of the member functions of that class is called 
DoModal(). This method displays the dialog box until it is dismissed with either 
an OK signal or with a Cancel signal. Thus, in step 3 we see that the dialog box 
from CCalculatorDlg is displayed. It then waits until the dialog box sends an 
OK or a Cancel signal. In step 4, the InitInstance() function returns the 
value FALSE, and the program terminates. 
 
Looking more closely at the code, one is left the following question- How does the 
program do anything? More specifically, once execution has passed to the first 
line in step 3, int nResponse = dlg.DoModal(); shouldn’t the program halt 
at that point and wait until the function call is resolved? 
 
The explanation lies in the concept of event-driven programming.  When an 
event occurs- a user presses a key, a program begins running, a mouse is moved 
(there are many others) Windows decides which program should handle that 
event. Windows starts running the appropriate code, and then waits for more 
events, without waiting for the code it started to terminate. In our case, the 
program runs up to the dlg.DoModal() command in step 3; however Windows 
will send other messages to our program that will be handled by other portions of 
the code. We shall illustrate this process in our calculator example. 

2 

3 

4 



 

Section 4: Editing the Dialog Box  
To begin to put some function on our calculator program, let us start by 
modifying the basic dialog box created by our skeleton and shown in Figure 3. 
The floating Controls toolbar allows us to insert a number of different objects into 
our dialog box; we shall focus on three- static text, edit boxes, and buttons. 
 
To construct our calculator, let us first select 
the existing static text “TODO: Place dialog 
controls here.” and delete it. Next, add two 
edit boxes for the inputs, and one for the 
output. We also need static text boxes to label 
each of these. Finally we add buttons for each 
type of calculation- addition, subtraction, 
multiplication and division- that our program 
shall perform. 

 
To add one of these items, simply click on the 
appropriate icon in the toolbar and then click 
on the place in the dialog box where you want 
the item to appear. To change the text that appears in a static text box or in a 

Edit Box 

Static Text 

Button 

Select 

Figure 5: Controls 

The Layout 
menu 

Currently selected 
dialog item 

Position of the Exit 
Program button in 
the dialog 

Size of the Exit 
Program button 

x 
Figure 6: Editing our dialog bo
6
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button, simply select the object, and begin typing. 
 
There are a number of tools available to simplify this process. On the main menu 
is an entry called Layout; from here you can align items, make them the same 
size, center them, and space them. When an item in a dialog box is selected, the 
bottom right corner of Visual C++ will display the size of the object, as well as its 
location in the dialog.  
 
When we have finished, we should have a dialog box that looks something like 
the one in Figure 6. 

Section 5: Adding Code 
We would like to add some functionality to our program; we will do so by adding 
variables for the edit boxes we have created, and by writing code that will be 
executed when buttons are pressed. 
 
We have three edit boxes to which we would like to associate variables. We begin 
the process by giving each edit box and each button a well-defined ID. Select the 
edit box corresponding to the first number in figure 6, right click, and select 
Properties. You will be presented with a dialog like the one in Figure 7. 

 
Figure 7: Editing the ID of a dialog item 

We shall change the default ID to something more descriptive, like 
IDC_FIRST_NUMBER.  We shall repeat the process with the second and third edit 
boxes, calling them IDC_SECOND_NUMBER and IDC_RESULT.  Because the result 
box is to be used only to display the result and not for input, it should be marked 
read-only. We can do that by checking the Read-only box in the Styles tab of the 
Edit Properties dialog, as seen in Figure 8. 

 
Figure 8: Selecting the Read-only box 
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We shall also change the ID of our buttons to IDC_ADD, IDC_SUBTRACT, 
IDC_MULTIPLY and IDC_DIVIDE.  
 
Next, we shall associate variables with our edit boxes. We can do this by starting 
the Class Wizard. This is done by selecting Class Wizard from the View menu, 
using the shortcut key Ctrl+W, or from the various context menus that appear 
with a right click.  Once the Class Wizard has started, select the Member  

 
Figure 9: The Class Wizard- Member Variables tab 

Variables tab; you will be presented with the dialog box in Figure 9. To add a 
variable, select a control ID, say IDC_FIRST_NUMBER, then select Add Variable. 
You will be presented with a box like the one in Figure 10. We created a double 
variable called m_dFirstNumber for that edit box; we proceed similarly creating 
doubles m_dSecondNumber and m_dResult. 
 
A Note on Variable Names 
In our code, we shall always use Hungarian notation for our variables. These are 
a set of conventions used to make our code more readable. Names of classes start 
with C. If a variable is a member of a class, precede it with m_. Each variable has a 
prefix indicating its type 
 
  Prefix Types 
  b  Boolean  
  cx  width 
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  cy height 
  d double 
 dlg dialog 
  i  int (integer)  
  n  short int  
  p  a pointer  
  rect rectangle 
  s  string  
  wnd window 
 
 The variable name is always capitalized. As examples, we have the class 
CCalculatorApp, and the member variable m_dFirstNumber.  The advantage 
is that, simply by looking at a variable, we can tell immediately if it is a member 
variable, and its type. 
 Hungarian notation is not entirely standardized, and there are variations; 
the key is to be consistent in your code and understandable to others. 
 

 
Figure 10: Adding a variable 

Returning to our variables, note that variables assigned to edit boxes are public 
variables by default. 
 
Next we would like to add some code that will be executed when buttons are 
pressed. We do this by assigning code to message maps. Whenever a button in a 
program is pressed, a message is sent to that program. We shall write the code 
that will execute when that message is received. We begin by starting the Class 
Wizard (Ctrl+W), and selecting the Message Maps tab. We are given a dialog box 
like that in figure 11.  
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Select the Object ID IDC_ADD corresponding to our Add button. This button can 
send two messages- one if it is clicked, and one if it double clicked; these 
messages are called BN_CLICKED and BN_DOUBLECLICKED, respectively.   

 
Figure 11: Adding a message handler 

To have code execute when the Add button is pressed, we simply select the 
BN_CLICKED message and select Add Function. We will then be prompted for a 
name of the resulting function; we can accept the default OnAdd(). When this is 
complete, we can select the Edit Code button to jump to the point in our source 
code for that function. 
 
Our skeleton code is the following. 

void CCalculatorDlg::OnAdd()  
{ 
 // TODO: Add your control notification handler code here 
  
} 

We would like this code to take the values in m_dFirstNumber and 
m_dSecondNumber, add them, and store the result in m_dResult. However, 
simply adding the line of code 
 

 m_dResult = m_dFirstNumber + m_dSecondNumber; 
 
to the OnAdd() function will not accomplish our goal. The reason for this is that, 
as currently constituted, the program does not take the text that the user has 
entered into the dialog box and convert it to values in our variables 
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m_dFirstNumber and m_dSecondNumber; likewise, once the result is 
calculated, we have not told the program to actually display the result. The 
missing piece is a function called UpdateData(BOOL). When 
UpdateData(TRUE) is called, the program will take the text in all of the edit 
boxes in the dialog, convert them, and store them in the appropriate variables in 
the class CCalculatorDlg. When UpdateData(FALSE) is called, the values in 
the variables in CCalculatorDlg are converted to text, and placed in the 
appropriate edit boxes in the dialog. Thus, our code for the OnAdd() function is 

 
void CCalculatorDlg::OnAdd()  
{ 
 // TODO: Add your control notification handler code here 
 
 UpdateData(TRUE); 
 m_dResult = m_dFirstNumber + m_dSecondNumber; 
 UpdateData(FALSE); 
  
} 

 
With this beginning, it is simple to add the corresponding code for subtraction, 
multiplication and division.  
 
One potential problem however, is what should the program do when the user 
asks to divide by zero? One way to alert the user is through the use of a message 
box. The function  
 

MessageBox( LPCTSTR lpszText, LPCTSTR lpszCaption = NULL, UINT 
nType = MB_OK )  

 
takes three arguments, and can be called from any class derived from CDialog, 
like our CCalculatorDlg. The variable types for the arguments may be new; a 
LPCSTR is a pointer to a constant character string; for our purposes it is 
sufficient to know that we can use any piece of text enclosed in quotations as an 
argument. A UNIT is an unsigned integer; however we would not usually place 
the numerical value there. Instead there are predefined names, like MB_OK 
which we would use in its place. 
 
The first argument is the text that will appear in our message box. The second is 
the caption of that message box, which by default is null. The last describes the 
icon that will appear; by default we use MB_OK which displays no icon. Other 
options are 
 

 
MB_ICONERROR 

 
MB_ICONQUESTION 

 
MB_ICONWARNING 
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MB_ICONINFORMATION 

 
Thus, we can use the following code for our OnDivide() function 
 

void CCalculatorDlg::OnDivide()  
{ 
 // TODO: Add your control notification handler code here 
  
 UpdateData(TRUE); 
  
 if(m_dSecondNumber == 0) 
  MessageBox("Division by zero is not    
   permitted","Warning",MB_ICONERROR); 
 else 
 { 
  m_dResult = m_dFirstNumber / m_dSecondNumber; 
  UpdateData(FALSE); 
 } 
  
} 

Now, if a user asks to divide by zero, the following message is displayed. 
 

 
Figure 12: Result of our MessageBox command 

Section 6: Saving and Loading 
Your work is saved every time you compile your code, so you will rarely need to 
save it manually; if you do, be sure to use the “Save All” feature. Recall that your 
program consists of many different files; the “Save” feature saves only the file 
that you are currently using. 
 
To load a program, it is simplest to use the “Open Workspace” command. This 
will load all of the files used for the program; the “Open” command will just open 
individual files. 
 
To transfer your program from one computer to another, you need to copy all of 
the files in the root directory for your code, as well as all of the entries in the “res” 
subdirectory. You do not need to copy the contents of the “Debug” directory.
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Section 7: Debugging the Code 
 
A debugger lets the programmer step through parts or all of a program one line at 
a time. This lets us follow the variables and check that our code is acting as we 
think it should. To start the debugger, we can use the Go icon from the build min-
bar (Figure 4) or press F5. If the program has been complied, it will execute until 
the code reaches a breakpoint. Then control passes to the programmer who can 
examine the values of the variables, and control how the program continues to 
execute. If no breakpoint is present in the code, the program executes normally. 
 
To set or remove a breakpoint, select a point in the code, and use the insert 
breakpoint icon from the build mini-bar, or press F9. This type of breakpoint will 
trigger every time the debugger reaches this point of the code. There are times, 
however, when one wants to wait until some condition has been reached before a 
break; these advanced breakpoints can be inserted by selecting Breakpoints from 
the Edit menu, or by pressing Alt+F9.  Once a breakpoint is created, you will see 
a red dot in the margin at that point. 
 

 
When a breakpoint is reached, the program will pause. To continue execution, we 
have a number of options.  

• Selecting Go from the build mini-bar (Figure 4) will cause the program to 
continue executing until it reaches the next breakpoint.  

• The Step Into (F11) command will execute the next statement, or, if that 
statement is a function call, it will jump to the first statement of that 
function.  

• The Step Over (F10) command will execute the next statement; if that 
statement is a function call, it will evaluate the result of that function.  

Restart 
Ctrl+Shift+F5 

Stop Debugging 
Shift+F5 

Break 
Execution 

Apply Code Changes 
Alt+F10 

Show Next 
Statement 

Step Into 
F11 

Step Over 
F10 

Step Out 
Shift+F11 

Run to Cursor 
Ctrl+F10 

Quick Watch 
Shift+F9 

Watch 

Variables 

Registers 

Call 
Stack 

Memory 

Disassembly 

Figure 13: The Debug Toolbar 
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• The Step Out command (Shift+F11) finishes executing the current function 
call, and jumps to the line after that function was called.  

• Run to Cursor (Ctrl+F10) begins executing statements, and stops when it 
reaches the current cursor position or a breakpoint. 

 
When a program has been stopped by the debugger, a great deal of information 
about the status of the program is available. If you hold the cursor over a variable, 
the value of that variable will be displayed. The Variables Debug box, which can 
be displayed by selecting the Variables icon on the Debug Toolbar, shows the 
variables which the debugger thinks are important. The Watch Debug box, which 
is displayed by selecting the Watch icon on the Debug Toolbar, lets the user 
choose which variables to see. It has four tabs, so that different collections of 
variables can be maintained. Whenever one of the variables changes values, it is 
marked in red in the Watch box and the Variables box. 
 
It is possible to edit your code while the debugger is running. You can even 
compile the changes, and have the program continue its execution from the stop 
at which you stopped, with the same variable values.  To do so, use Apply Code 
Changes (Alt+F10) from the Debug Toolbar. 

Value of the 
variable 

The Variables 
Box 

The Watch 
Box 

The Debug 
Toolbar 

Figure 14: Debugging a program 
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Section 8: Getting Help 
 
One can get help on any C++ keyword or MFC function by simply putting the 
cursor over the word, and pressing F1.  This will bring up MSDN Library. If your 
word appears in more than one context, you will given a list of topics and asked to 
select one. 
 

Resources 
 
The calculator program described in these notes is available electronically. 

Assignment 
 
Write a program that takes two numbers, say x  and y , and returns either 

• The mean 
2

x y+
, 

• The geometric mean  xy , or 

• The harmonic mean  
1 1
2 1 1

x y
⎛ ⎞

+⎜ ⎟
⎝ ⎠

, 

depending on the button selected. Basic error checking should be performed. Use 
the debugger as needed. 
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Introduction to Numerical 
Methods 

Numerical Integration 
 

Section 1: Theoretical Background 
 
We would like to develop methods that can be used to solve realistic 

mathematical problems with the aid of a computer program. To do so, we need to 
learn some numerical methods. Most of these techniques are based upon Taylor’s 
Theorem, which we learned in Calculus 2. We begin by reviewing some 
fundamental results from Calculus 1, then we prove Taylor’s Theorem. Next, we 
discuss how to use numerical methods to evaluate definite integrals.  

 
We begin with Rolle’s Theorem.  
 

Rolle’s Theorem: Let ( )f x   be continuous on [ ],a b   and differentiable on  

( ),a b . If  ( ) ( )f a f b= , then there exists a point ξ   in the interval ( ),a b  so that 

( ) 0f ′ ξ = . 

 

Intuitively this says that if there are two points (say a  and b ) where the 
function has the same value, then there is a point between them (call it ξ ) so that 
the derivative of f  at that point is zero. There is no requirement that the point at 
which the derivative is zero is unique. For example, consider Figure 2, where we 

a  bξ

Figure 1: Illustration of Rolle’s Theorem 
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have moved the point b  from Figure 1 to the right. Now there are two points, 
labeled 1ξ  and 2ξ ,  so that ( ) ( )1 2 0f f′ ′ξ = ξ = . 

 
Rolle’s Theorem was proven in Calculus 1; we shall not repeat the proof. 
 
Our next major result is the Mean Value Theorem. 
 

Mean Value Theorem: Let ( )f x   be continuous on [ ],a b   and differentiable 

on  ( ),a b . Then there exists a point ξ   in the interval ( ),a b  so that 

( ) ( ) ( )( )f b f a f b a′− = ξ − . 

 
Intuitively, the Mean Value Theorem says that there is at least one point 

between a  and b , say ξ , so that the tangent line to f  through ( )( ), fξ ξ  is 

parallel to the line through ( )( ),a f a  and ( )( ),b f b .  For an illustration, see figure 

3. 
 
We can prove the Mean Value Theorem by appealing to Rolle’s Theorem. 

Indeed, define the new function  

 ( ) ( ) ( ) ( )x a b xx f x f b f a
b a b a
− −⎡ ⎤φ = − +⎢ ⎥− −⎣ ⎦

. (1) 

What is the function ( )xφ ? It is the difference of the original function ( )f x  and 

the equation of a line. 
 
Note that if x a= , then  

Figure 2: Second illustration of Rolle’s Theorem 

a  b  
1ξ 2ξ
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( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
0 0 1

0

f b f a f a

a a b aa f a f b f a f a f a
b a b a

= ⋅ = = ⋅ =

⎡ ⎤
⎢ ⎥− −

φ = − + = − =⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦
14243 14243

; 

similarly  

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( )
1 0 0

0

f b f b f a

b a b bb f b f b f a f b f b
b a b a
= ⋅ = = ⋅ =

⎡ ⎤
⎢ ⎥− −

φ = − + = − =⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦
14243 14243

. 

Since ( )xφ  is the difference of ( )f x  and a linear function, it is continuous on 

[ ],a b  and differentiable on ( ),a b . Thus, Rolle’s Theorem implies that there is at 

least one point, call it ξ  in ( ),a b  so that ( ) 0′φ ξ = . However, differentiating (1), 

we see that 

( ) ( ) ( ) ( )1 1x f x f b f a
b a b a

−⎡ ⎤′ ′φ = − +⎢ ⎥− −⎣ ⎦
. 

Since ( )x′φ  is zero when x = ξ , we see that 

( ) ( ) ( )f b f a
f

b a
−

′ ξ =
−

 

as required. □ 
 
One useful consequence of the Mean Value Theorem is that it gives us an 

estimate for the values of a function. Indeed, suppose that the value of f  were 

known at some point, say 0x , and we would like to know the value of the function 

a  b  
ξ  

Figure 3: Illustration of Rolle’s Theorem 
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at some nearby point, say x . Setting 0a x=  and b x=  in the Mean Value 

Theorem, we find that 
 ( ) ( ) ( ) ( )0 0f x f x x x f ′= + − ξ  (2) 

for some unknown ξ  between 0x  and x . Suppose all we knew about the function 

f  was that ( )0 4f x =  and that 1f ′ ≤ . Then the Mean Value Theorem tells us that 

( )0 044 x x f x x x≤ +− − ≤ − . 

Thus we have been able to estimate the value of the function at the point x  by 
using our information on ( )0f x  and on f ′ .  

 
As estimates go, this is not terribly useful, because it simply uses the value 

of ( )0f x  to estimate the value of ( )f x . However, there is a better result we can 

use to obtain these estimates: Taylor’s Theorem. 
 

Taylor’s Theorem: Let ( )f x  have 1n +  derivatives on ( ),a b , and suppose that 
( )nf  is continuous on [ ],a b . For any x  and 0x  in[ ],a b , there exists a number ξ  in 

( ),a b  so that  

.))((
)!1(

1))((
!

1

))((
!3

1))((
!2

1))(()()(

1
0

)1(
00

)(

3
00

2
00000

++ −ξ
+

+−+

+−′′′+−′′+−′+=

nnnn xxf
n

xxxf
n

xxxfxxxfxxxfxfxf

L

 

 
To understand this result, let us first see what it says if 1n = . In this case it 

says that given any x  and 0x , there is a number ξ  so that 

( ) ( ) ( ) ( )0 0f x f x x x f ′= + − ξ . 

This is exactly what the Mean Value Theorem told us in (2) above. However, 
Taylor’s Theorem goes even farther. It also says that 

 ( ) ( ) ( ) ( ) ( ) ( )2
0 0 0 0

1
2

f x f x x x f x x x f′ ′′= + − + − ξ  (3) 

 
and  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3
0 0 0 0 0 0

1 1
2! 3!

f x f x x x f x x x f x x x f′ ′′ ′′′= + − + − + − ξ  (4) 

 
for (probably different) values of ξ . The first of these is an approximation of 

( )f x  by a quadratic function, while the last is an approximation by a cubic. The 

power of Taylor’s Theorem is that is lets us approximate an unknown function by 
a polynomial of arbitrary order, provided the derivatives exist and are 
continuous. 
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As an example, let us estimate the value of sin 40o . We begin by converting 
40o  to radians; we know that 2

940 = πo . We know the exact values of the 

trigonometric functions at 1
445 = πo , so we choose ( ) sinf x x= , and set  2

9x = π  

and 1
0 4x = π  in (3).  Thus 

( ) ( )22 1 2 1 1 1 2 1
9 4 9 4 4 2 9 4sin sin cos sinπ = π+ π− π π− π− π ξ  

for some unknown value of ξ  between 2
9 π  and 1

4 π . Thus 
2

2
9

2 1 2 1 1sin sin
2 36 2 2 36

⎛ ⎞ ⎛ ⎞π = − π − π ξ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Now we know that sin ξ  is between 1−  and 1. (Actually, we know a bit more- see 
the exercises!). Thus 

2 2
2
9

2 1 2 1 1 2 1 2 1 1sin
2 36 2 2 36 2 36 2 2 36

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− π − π ≤ π ≤ − π + π⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

Evaluating these expressions, we see that 
2
90.6415 sin 0.6493≤ π ≤ . 

Thus we have an estimate for sin 40o  of about 0.64 .  
 
We can improve this estimate by using (4) instead of (3). In this case, we 

find that  

( ) ( ) ( )2 32 1 2 1 1 1 2 1 1 1 2 1
9 4 9 4 4 2 9 4 4 6 9 4sin sin cos sin cosπ = π+ π− π π− π− π π− π− π ξ . 

Thus 
2 3

2
9

2 1 2 1 1 2 1 1sin cos
2 36 2 2 36 2 6 36

⎛ ⎞ ⎛ ⎞ ⎛ ⎞π = − π − π − π ξ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

Again, using the fact that cosξ  is between 1−  and 1, we see that 
2 3

2 3
2
9

2 1 2 1 1 2 1 1
2 36 2 2 36 2 6 36

2 1 2 1 1 2 1 1sin .
2 36 2 2 36 2 6 36

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− π − π − π⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞≤ π ≤ − π − π + π⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Evaluating these expressions, we find that  
2
90.64259 sin 0.64282≤ π ≤  

Thus we have a better estimate for sin 40o  of about 0.643 .  
 
Clearly we could continue this process indefinitely, obtaining better and 

better estimates for sin 40o . In fact, calculators use a variation of this process to 
evaluate trigonometric functions. 

 
We would like to prove Taylor’s Theorem, but to do so, we need an 

auxiliary result, called the Generalized Mean Value Theorem.  
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Generalized Mean Value Theorem: Let ( )f x  and ( )g x  be continuous on 

the interval [ ],a b  and differentiable on the interval ( ),a b . Then there is a number 

ξ  in the interval ( ),a b  so that 

( ) ( ) ( ) ( ) ( ) ( )f b f a g g b g a f′ ′− ξ = − ξ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

 
The proof of this result is similar in sprit to the proof of the Mean Value 

Theorem. We begin by constructing the auxiliary function 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )x f x g b g a g x f b f aφ = − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (5) 

The hypotheses on f  and g  guarantee that φ  is continuous on [ ],a b  and 

differentiable on ( ),a b ; thus there is a point ξ  in ( ),a b  so that 

 ( ) ( ) ( )( )b a b a′φ − φ = φ ξ − . (6) 

Differentiating the expression in (5), we find that 

( ) ( ) ( ) ( ) ( ) ( ) ( )x f x g b g a g x f b f a′ ′ ′φ = − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

Thus, if we substitute into (6), we see that 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ }.

f b g b g a g b f b f a

f a g b g a g a f b f a

f g b g a g f b f a

− − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

′ ′= ξ − − ξ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

Simplifying the left side, we find that it is zero and our result is proven. □ 
 

Proof of the Mean Value Theorem.  With this preliminary result, we 
are now ready to prove the Mean Value Theorem. Let x  and 0x  be fixed numbers. 

We introduce the new variable t , and define ( ) ( ) 1
0

ng t t x += − . We then introduce 

the auxiliary functions 
2 3 ( )

2 3 ( )

1 1 1( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
2! 3! !
1 1 1( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) .
2! 3! !

n n

n n

F t f t f t x t f t x t f t x t f t x t
n

G t g t g t x t g t x t g t x t g t x t
n

′ ′′ ′′′= + − + − + − + + −

′ ′′ ′′′= + − + − + − + + −

L

L
 

Apply the generalized Mean Value Theorem to these functions; thus there exists a 
value ξ  so that 

 ( ) ( ) ( ) ( ) ( ) ( )0 0F x F x G G x G x F′ ′− ξ = − ξ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (6) 

Our proof will be complete when we substitute back into this expression. We 
begin by calculating F ′  and G′ . From the definition of ( )F t  and the product 

rule, we find that 
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( )( ) ( )( )

( )

2

42 3 ( ) 1 ( 1)

1( ) ( ) ( ) 2 ( )( )
2!

1 13 ( )( ) ( )( ) ( )( ) ( )( ) .
3! !

n n n n

F t f t f t f t x t f t x t f t x t

f t x t f t x t nf t x t f t x t
n

− +

⎡ ⎤′ ′ ′ ′′ ′′ ′′′= + − + − + − − + −⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤′′′ ⎡ ⎤+ − − + − + + − − + −⎣ ⎦⎣ ⎦ L

 

Note that, because the derivative is being taken in t , the derivative of ( )x t−  is 

1− , that the derivative of ( )2x t−  is ( )2 x t− −  and so on. (Chain Rule!) Examining 

our result, we see that the first two terms cancel out, as do the third and fourth. 
In fact, the only term that will remain is the last, so that  

( 1)1( ) ( ) ( )
!

n nF t f t x t
n

+′ = ⋅ − . 

 
Repeating the process for ( )G t , we see that 

( ) ( ) ( ) ( )11
!

nnG t g t x t
n

+′ = ⋅ − . 

Because ( ) ( ) 1
0

ng t t x += − , we see that ( ) ( ) ( )1 1 !ng t n+ = +  and thus 

( ) ( ) ( )1 !
!

nn
G t x t

n
+

′ = − . 

  
Next, we need to evaluate ( )G x  and ( )0G x . The first is simple; indeed 

direct substitution shows us that ( ) ( ) 1
0( ) nG x g x x x += = − . On the other hand,  

2
0 0 0 0 0 0

3 ( )
0 0 0 0

1( ) ( ) ( )( ) ( )( )
2!

1 1( )( ) ( )( ) .
3! !

n n

G x g x g x x x g x x x

g x x x g x x x
n

′ ′′= + − + −

′′′+ − + + −L

 

Now ( ) ( ) 1
0

ng x x x += − , so  

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1
0 0 0

0 0 0

1
0 0 0

0 0 0

0

( 1)( ) 0

1 0

( 1) 1 1 0

n

n

n

n

g x x x

g x n x x

g x n n x x

g x n n n x x

+

−

= − =

′ = + − =

′′ = + − =

= + − − =

M

L

 

so that ( )0 0G x = .  

  
Substituting these values into (6), we find that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
0 0

1 ! 10
! !

n n nnn
F x F x x x x f x

n n
+ ++ ⎡ ⎤− − ξ = − − ξ −ξ⎡ ⎤⎣ ⎦ ⎣ ⎦  

and hence 



 

( ) ( ) ( )
( ) ( ) ( ) 11

0 0
1

1 !
nnF x F x f x x

n
++= + ξ −

+
. 

Because 
2

3 ( )

1( ) ( ) ( )( ) ( )( )
2!

1 1( )( ) ( )( )
3! !

n n

F t f t f t x t f t x t

f t x t f t x t
n

′ ′′= + − + −

′′′+ − + + −L

, 

we see that 
( ) ( )F x f x=  

and that 
2

0 0 0 0 0 0

3 ( )
0 0 0 0

1( ) ( ) ( )( ) ( )( )
2!

1 1( )( ) ( )( ) .
3! !

n n

F x f x f x x x f x x x

f x x x f x x x
n

′ ′′= + − + −

′′′+ − + + −L

 

Combining these, we obtain the statement 
2 3

0 0 0 0 0 0 0

( ) ( 1) 1
0 0 0

1 1( ) ( ) ( )( ) ( )( ) ( )( )
2! 3!

1 1( )( ) ( )( )
! ( 1)!

n n n n

f x f x f x x x f x x x f x x x

f x x x f x x
n n

+ +

′ ′′ ′′′= + − + − + − +

+ − + ξ −
+

L

 

which completes the proof. □ 
 

Section 2: The Trapezoidal Rule 
 
Our goal in this chapter is to learn how to approximate the values of 

definite integrals. Indeed, suppose we want to evaluate the definite integral 
1

0

( )
x

x
f x dx∫   using a computer, where 0 1x x< , and ( )f x  is some smooth function. 

One approach is to approximate ( )f x  be a straight line, and find the area 

beneath the resulting trapezoid; this is called the (simple) trapezoidal rule.  
 
 

 
 
 
 
 

 
 
The trapezoidal rule approxi
area on the right side. The ap

0x  1xh
0x 1xh

 
Figure 4: The trapezoidal rule
24

mates the area on the left side of figure 4 with the 
proximation is 
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( )1

0
0 1( ) ( ) ( )

2
x

x

hf x dx f x f x≈ +∫ . 

where we have set 1 0h x x= −  to be the size of the interval. 

 
Before we can use the trapezoidal rule, we need to know how accurate it is. 

We can find out by using Taylor’s Theorem. Indeed, from Taylor’s Theorem, we 
know that  

2
01000 ))((

2
1))(()()( xxfxxxfxfxf −ξ′′+−′+= . 

Integrating, we find that 

∫

∫∫

−ξ′′+−⋅′+⋅=

⎭
⎬
⎫

⎩
⎨
⎧ −ξ′′+−′+=

=

=

1

0

1

0

1

0

1

0

2
01

2
000

2
01000

))((
2
1)(

2
1)()(

))((
2
1))(()()(

x

x

xx

xx

x

x

x

x

dxxxfxxxfxfh

dxxxfxxxfxfdxxf

 

where 1ξ  is some number depending on x . Because 1ξ  depends on x , we cannot 
directly evaluate the last integral.  
 

To evaluate the second term, we use an approximation for ( )0f x′ . We can 

find such an approximation with the aid of Taylor’s Theorem. Indeed, there is a 
number 2ξ  so that 

( ) 2
2001 2

1)()()( hfhxfxfxf ξ′′+⋅′+= . 

Solving for ( )0xf ′ , we see that 

( ) )(
2

)()(
2

01
0 ξ′′+

−
=′ fh

h
xfxf

xf . 

 
Plugging this in above, we see that  

( ) Exfxfh

dxxxffh
h

xfxfhxfhdxxf
x

x

x

x

++=

−ξ′′+⎥⎦
⎤

⎢⎣
⎡ ξ′′+

−
+⋅= ∫∫

)()(
2

))((
2
1)(

2
)()(

2
)()(

10

2
012

01
2

0
1

0

1

0
 

where the error E  is 

∫ −ξ′′+ξ′′= 1

0

2
012

3

))((
2
1)(

4
x

x
dxxxffhE . 

Thus 

.max

64
max

)(max
2
1max

4

3

33

2
0

3
1

0

fCh

hhf

dxxxffhE
x

x

′′≤

⎥
⎦

⎤
⎢
⎣

⎡
+′′≤

−′′+′′≤ ∫
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We have proven that  

( )1

0
0 1( ) ( ) ( )

2
x

x

hf x dx f x f x E= + +∫  

where 
3 max | |E Ch f ′′≤  

where 12
5

6
1

4
1 =+=C . The result is actually true for 12

1=C , but the proof is more 

complex. 
  

The problem with this approach is that the error gets larger as the interval 
gets larger. Our solution is to split the interval up into a number of pieces, and 
apply the simple trapezoidal rule on each piece; the result is called the composite 
trapezoidal rule.  

 

The Trapezoidal Rule. To approximate the definite integral ∫
b

a
dxxf )( , choose 

a number of subintervals n ; the width of one subinterval is then 
n

abh −
= . Let 

ihaxi +=  for ni ≤≤0  be the endpoints of the resulting subintervals. The 

trapezoidal rule approximation is 

( ) ( ) ( ) ( ) ( )0 1 2 1( ) 2 2 2
2

b

n na

hf x dx f x f x f x f x f x E−= + + + + + +⎡ ⎤⎣ ⎦∫ L  

with error E  at most 

fabhE ′′−
≤ max

12
)(2

. 

 
We can prove this result by applying the simple trapezoidal rule n  times, 

once on each subinterval. On each subinterval, there is an error of at most 
31

12 max | |h f ′′ , and there are 
b an

h
−

=  such intervals. Thus the total error is no 

more than  
31 max | |

12
b ah f

h
−′′ ⋅  

which is our result. 
 

Section 3: Simpson’s Rule 
 
In practice, the trapezoidal rule is rarely used. This is because there is a 

much more accurate method that is nearly as simple to implement, called 
Simpson’s rule.  Suppose that we want to evaluate the definite integral 

2

0

( )
x

x
f x dx∫  where ( )1

1 0 22x x x= +  is the midpoint of the interval[ ]0 2,x x , 
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and 1 0 2 1h x x x x= − = −  is the width of each of the intervals [ ]10 , xx  and [ ]21 , xx . 

Apply Taylor’s Theorem to ( )f x  at 1x  with 4n = ; then we find that 

( ) 2 3 (4) 41 1 1
1 1 1 1 1 1 1 12 6 24( ) ( )( ) ( )( ) ( )( ) ( )( )f x f x f x x x f x x x f x x x f x x′ ′′ ′′′= + − + − + − + ξ −  

for some ξ  in the interval [ ]0 2,x x  that depends on the value of x . Integrating this 

on the interval[ ]0 2,x x , we find that 

 ( ) ( ) ( )

( )

2 2

0 0

3

0

21
1 1 1 1 12

3 (4) 41 1
1 1 16 24

21
1 1 1 2

2 0 /3

3 (4) 41 1
1 16 24

0

( ) [ ( ) ( )( ) ( )( )

( )( ) ( )( ) ]

( )( )

x x

x x

h h h

h h h

h h
h x

h x

f x dx f x f x x x f x x x

f x x x f x x dx

f x dy f x y dy f x y dy

f x y dy f x x dx

− − −

= = =

−

=

′ ′′= + − + −

′′′+ − + ξ −

′ ′′= + +

′′′+ + ξ −

∫ ∫

∫ ∫ ∫

∫

123 14243 14243

14243

( ) ( )

2

2

0

3 (4) 41 1
1 1 13 242 ( )( ) .

x

x
h f x h f x f x x dx′′= + + ξ −

∫

∫

 (7) 

where we have made the change of variables 1y x x= − . 

 
Next we need to find an estimate of the value of ( )1f x′′ .  This is similar to 

our position when we were deriving the trapezoidal rule. There, and here, our 
solution is to use the trapezoidal rule. However in this case, some additional work 
will be required. Apply Taylor’s Theorem at 1x  to estimate the value of ( )0f x ; we 

then apply Taylor’s Theorem at 1x  to estimate the value of ( )2f x . We obtain  
2 3 4

(4)
2 1 1 1 1 2

2 3 4
(4)

0 1 1 1 1 0

( ) ( ) ( ) ( ) ( ) ( ),
2 6 24

( ) ( ) ( ) ( ) ( ) ( ),
2 6 24

h h hf x f x hf x f x f x f

h h hf x f x hf x f x f x f

′ ′′ ′′′= + + + + ξ

′ ′′ ′′′= − + − + ξ
 

for unknown values 0ξ  and 2ξ . If we add these equations and solve, we find that 
2

(4) (4)0 1 2
1 0 22

( ) 2 ( ) ( )( ) ( ) ( )
24

f x f x f x hf x f f
h

− +′′ ⎡ ⎤= − +⎣ ⎦ξ ξ . 

Thus, if we substitute this into (7), we find that 

( )

( ) ( ) ( )

2

0

2

0

2
3 (4) (4)0 1 2

1 0 22

(4) 4
1

0 1 2

( ) 2 ( ) ( )1( ) 2 ( ) ( )
3 24

1 ( )( ) .
24

4
3

x

x

x

x

f x f x f x hf x dx h f x h f f
h

f x x dx

h f x f x f x E

⎡ ⎤− +
⎡ ⎤= + − ξ + ξ⎢ ⎥⎣ ⎦

⎣ ⎦

+ ξ −

= ⋅ + + +⎡ ⎤⎣ ⎦

∫

∫  

where 
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2

0

5
(4) (4) (4) 4

0 2 1
1( ) ( ) ( )( ) .

72 24
x

x

hE f f f x x dx− ⎡ ⎤= ξ + ξ + ξ −⎣ ⎦ ∫  

Thus 

( ) ( )

( )

5
4 4 4

45

1max max
36 24

1 1 max .
36 60

h

h

hE f f y dy

h f

−
≤ +

⎛ ⎞≤ +⎜ ⎟
⎝ ⎠

∫
 

In fact, with a more complex proof, one can show that ( )451 max .
90

E h f≤  

 
Like the trapezoidal rule, there is a composite version of Simpson’s rule. 
 

Simpson’s Rule. To approximate the definite integral ∫
b

a
dxxf )( , choose an 

even number of subintervals n ; the width of one subinterval is then 
n

abh −
= . Let 

ihaxi +=  for ni ≤≤0  be the endpoints of the resulting subintervals. Simpson’s 

rule approximation is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0 1 2 3 4

2 1

( ) [ 4 2 4 2
3

2 4 ]

b

a

n n n

hf x dx f x f x f x f x f x

f x f x f x E− −

= + + + + +

+ + + +

∫ L
 

with error E  at most 

)4(
4

max
180

)( fabhE −
≤ . 

 
This is proven by applying Simpson’s rule on the intervals [ ]0 2,x x , [ ]2 4,x x , 

…,[ ]2 ,n nx x− . The error of Simpson’s rule on is no more than ( )451 max
90

h f , and 

we apply it ( ) / 2b a h−  times. 

 

Assignments 
 
1. In section 1 we obtained a pair of estimates for sin 40o  where we had to 

estimate sin ξ  and cosξ . In that example, we used the estimates 1 sin 1− ≤ ξ ≤  and 

1 cos 1− ≤ ξ ≤ . Explain why we could use the estimates 21
2 2sin≤ ξ ≤  and 

32
2 2cos≤ ξ ≤ . How does this improve our result? 

 
2. Use Taylor’s Theorem with 4n =  to estimate sin 40o . 
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3. Use Taylor’s Theorem with 4n =  to estimate cos 25o . 
 
4. Write a program that takes as input the left endpoint a  and the right 

endpoint b  of an interval, together with a number of subintervals n . The 
program should return the Composite Trapezoidal Rule approximation to the 

integral 
2b x

a
e dx−∫  with n  subintervals 

a. Basic error checking on the values should be performed. 

b. Use your program to estimate ∫ −1

0

2

dxe x  as accurately as possible. 

c. Use your program to estimate 
2

0

xe dx
∞ −∫  as accurately as possible. 

Explain the reasoning behind your answer. 
 
5. Write a program that takes as input the left endpoint a  and the right 

endpoint b  of an interval, together with an even number of subintervals n . The 
program should return the Composite Trapezoidal Rule approximation and the 

Simpson’s Rule approximation to the integral 
sinb

a

x dx
x∫ . 

a. Basic error checking should be performed. 
b. To avoid the (removable) singularity at the origin, you only need 

to be able to evaluate the integral for 0a > . 

c. Use your program to evaluate 
0

sin x dx
x

π

∫  as accurately as 

possible. 

d. Can you extend your program so that it can evaluate 
sinb

a

x dx
x∫  

for any real choices of a  and b ? 
 

6. Simpson’s Three-Eighth’s rule for the approximation of the definite 

integral ∫
b

a
dxxf )( is the following. Choose a number of subintervals n  that is 

evenly divisible by three; the width of one subinterval is then 
n

abh −
= .  Let 

ihaxi +=  for ni ≤≤0  be the endpoints of the resulting subintervals. Simpson’s 

Three Eighth’s Rule for the approximation nI  is 
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( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( )

0 1 2

3 4 5

6 7 8

6 5 4

3 2 1

3( ) [ 3 3
8

2 3 3

2 3 3
...
2 3 3

2 3 3

]

b

a

n n n

n n n

n

hf x dx f x f x f x

f x f x f x

f x f x f x

f x f x f x

f x f x f x

f x E

− − −

− − −

= + +

+ + +

+ + +

+

+ + +

+ + +

+ +

∫

 

where ( )4E O h= . 

a. Write a program that implements Simpson’s Three Eighth’s rule. 
Include basic error checking. 

b. The error for Simpson’s Three-Eighth’s Rule is ( )4hO . What does 
this mean, and how does it compare to Simpson’s Rule and the 
Trapezoidal Rule?  

c. Would you use Simpson’s Three-Eighths Rule in practice? Why or 
why not? 
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Classes and Software Design 
 

Section 1: Object-oriented programming 
 

 In object-oriented programming paradigm, we group operations and data 
into modular units called objects. The operations define the object interface and 
describe a set of commands and actions that an object can perform and respond 
to.  The data segment of an object is used to maintain the state of the object. The 
main design philosophy of object-oriented programming paradigm is to use 
objects to represent and model as closely as possible the way real-world entities 
interact. Thus, objects and object interactions are the basic elements of this 
model.  Another salient feature of object-oriented programming is code 
reusability and extendibility. If an object is defined in our environment, it can be 
used in different applications. Also, we can extend the definition of an object to 
define new object types. This property is called inheritance.   

Section 2: Classes 
 

Classes are predefined types in C++ and are used to define new types.  An 
object is instance of a class. A class has two parts: data segment and its associated 
operations.  The operations are called member functions or methods and the 
variables where the data is stored are called data members of the class.  Each 
object maintains its own copy of the data members. Collectively, the data 
members define the state of the object. 
 

Two separate files are used for class type declaration: a specification file 
and an implementation file. The specification file contains the class interface 
which consists of the declaration of the class variables and functions. The 
implementation file contains the implementation of the class member functions. 
The class specification is stored in a header file, denoted by file extension .h, and 
is available to any client code that wants to use the class. The class 
implementation is stored in a source file, denoted by file extension .cpp. 
Separation of the class specification from its implementation allows a more 
efficient execution of the programs. Changes to the implementation file will not 
require modification of the client code, as long as the class interface remains the 
same. Moreover, this provides an added security by not requiring the client code 
to have access to the implementation file. 
 
 The syntax for the class specification is: 
 

class  myClass 
{ 
   public: 
 
 constructor functions 
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 member functions 
 class variables 
 destructor functions 
  private: 
 data variables 
 private functions 
} 

 
To create a header file, from Visual C++, select File, then New.  A dialog 

box like the one in Figure 1 will be displayed on your screen. The given types are 
the different file types that one can create.  Select C/C++ Header File and provide 
a file name.  The new file will be added to the selected project.  The projected 
name is displayed in the box on the top right corner of the dialog box.     

 

 
Figure 1: Creating a header file 

 
To create a C++ source file, we can repeat the above steps and select C++ 

source file. The implementation file contains the definition of the member 
functions. The syntax for a member function is similar to regular function 
definitions.  The only difference is that we have to qualify the name of the 
function by using the resolution operator “::” and the class name.   

 
return_type  myclass::functionname(param list) 
{ 
 // Do something here… 
} 
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A class header file should be included in its implementation file and all the other 
client files that use that particular class.   

 
What we described in this section is the manual way of declaring and 

creating classes.  The programmer actually creates the files and manages any 
changes to these files.  There is another, simpler, way to create classes and that is 
by using the MFC class wizard, which is described in section 6. 

Section 3: Constructors and Destructors 
 

A class constructor is a member function whose purpose is to initialize the 
private data members of a class object. The name of a constructor is always the 
name of the class, and there is no return type for the constructor. A class may 
have several constructors with different parameter lists. A constructor with no 
parameters is the default constructor. A constructor is implicitly invoked when a 
class object is declared. As a matter of style, the constructor function declarations 
are normally positioned at the top of the class public section. A constructor 
function does not have a return type and since it is implicitly called when an 
instance of a class is created we never directly call a constructor function.   

 
A class destructor is a member function whose purpose is to provide a 

clean exit when an instance of a class ceases to exit. We do not need to provide a 
destructor function for classes that do not allocate memory dynamically, as the 
memory for automatic data objects are deallocated when the instance ceases to 
exist. However, if an instance of a class allocates memory dynamically for its data 
objects, one needs to provide a destructor function to deallocate the memory 
before it exits. Similar to the constructor functions, a destructor function does not 
have a return call and cannot be called directly by the programmer. It is called 
automatically when the object goes out of scope and ceases to exist. The general 
syntax of a destructor function declaration is  
 

~class_name ( ) 
{ 
 Deallocate memory for all the dynamically allocated  

  structures. 
}  

  

Section 4: Access Control for Variables & Functions  
 

For each variable and function declared in a class we have to provide an 
access method defining who can access these data objects and functions.  The 
possible access methods are: 

• Public: Data and functions declared in the public section of a class are 
available to client programs. In other words they are visible from outside 
of the class. 
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• Private: Data and functions declared in the private section of the class are 
only accessible within the class and are not available to the client 
programs.  Private is the default access control for the class data and 
function, unless specified otherwise. 

• Protected: Data and functions declared in the protected section are only 
available to the derived classes (described in Section 5). 

• Friend: Functions and class types declared as friend of a class have access 
to the private data and function members of the class. 

   
In general the access method for the data members of class is private.  We 

do not want an object’s data to be modified directly by the client code. To have 
control over the state of the object any access to the data should be done through 
the member functions. Thus, it is extremely important to provide a complete set 
of functions that allows all possible operation on the data members. Below is a 
simple example of class defining a new type student. 

 
class student     //declare the class 
{ 
   private:   
     char    name[50]; 
     int   ID; 
     int  Num_Of_Credits;     
     char  major[4]; 
  public:        
 student(char name[], int );     
      student(); 
      ~student(); 
     void  declare_major(char major[4])      
     void  print_student_info(); 
}; 

Section 5: Inheritance and derived classes 
 
One of the salient features of the object-oriented programming paradigm 

is inheritance.  Though a complex subject, it can be briefly described as the ability 
to create new classes, referred to as derived class, from existing classes, referred 
to as base classes. We can define extra features in the new class by defining new 
data and function members and inherit the base class functions and data. The 
derived class has access to public and protected members of the base class. When 
an instance of a derived class is created, the constructor of the base class is 
executed first and then the constructor of the derived class. Multiple classes can 
be derived from the same base class.  In the example below the two classes 
Manager and Secretary are derived classes from Employee class. 
 

class Employee  
{  
private: 
  char* name; 
  int age;  
  int department;  
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  int salary;  
protected: 
  void showSalary(); 
public:  
  Employee( );  
  void print();  
};  
 

/////////////////////////////////// 
 

class Manager : public Employee  
{  
 Private: 
  char * project; 
  int  deptSize;   
  public:  
  Manager( );  
  void print();  
};  
 

////////////////////////////////// 
 

class Secretary : public Employee 
{ 
 Private: 
  char* Supervisor; 
public:  
  Secretary( );  
  void print();  
}; 

Section 6: Creating a Class Using the ClassWizard 
 
In this section we describe how to use the ClassWizard to define a class 

type.  The ClassWizard creates, maintains and manages class code. It is used to 
make modifications to the code, generate new derived classes and add member 
data and functions. It automatically adds the created files to the current project.  
Once classes are created using the class wizard, one should not modify the classes 
manually. The file with .clw extension in the project directory is created and 
maintained by the Cass Wizard to keep track of classes and their relationship.   

 
Below we describe the step-by step process of creating classes using the 

ClassWizard.  For this example create a dialog-based application, call it Example. 
From Visual C++, select Insert and then Dialog option.  This will insert a dialog 
box in to your application.  Another way to insert a dialog box is by selecting the 
ResourceView tab in the workspace pane, right click on the Dialog and select the 
insert option. Change the ID of dialog box to IDD_STUDENT and give it the 
caption Student. From Visual C++, select View and then ClassWizard option, or 
invoke the ClassWizard by directly typing CTL+W. Shown in Figure 2 is the 
dialog box that will be displayed on your screen. 
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Figure 2: The ClassWizard 

 
Select the Add Class button and select the first option New. The dialog box 

shown in Figure 3 will be displayed on your screen.  Provide a name and a base 
class for the newly defined class type.  In this case we named the class type 
CStudent and it is derived from the base class CDialog.  The ClassWizard 
creates the CStudent class by creating the corresponding source and header 
files.  We can add member functions and member variables by right clicking on 
the class name that appears in the ClassView of the Workspace pane, shown in 
Figure 4.    
 

 
Figure 3: The New Class dialog 
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Figure 4: Right-click on a class 

  
The following dialog box is displayed when Add Member Variable is selected. In 
this example, we declare StudentID a private variable of integer type. 
 

 
Figure 5: Add Member Variable dialog 

 
Similarly, we can declare a new function by selecting add member function 
option.    
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Figure 6:  Add Member Function 

 
Below lists the content of the source and header files automatically generated by 
the ClassWizard after the above declarations: 
 
Header File: 
 
 #if !defined(AFX_STUDENT_H__EF84C76A_32B5_ 
  4779_A593_EF886F02D186__INCLUDED_) 
 #define AFX_STUDENT_H__EF84C76A_32B5_4779_ 
  A593_EF886F02D186__INCLUDED_ 

 
#if _MSC_VER > 1000 
#pragma once 
#endif // _MSC_VER > 1000 
// Student.h : header file 
// 
 
///////////////////////////////////////////////////////////////// 
// CStudent dialog 
 
class CStudent : public CDialog 
{ 
// Construction 
public: 
 int getStudentID( ); 
 CStudent(CWnd* pParent = NULL);   // standard constructor 
 
// Dialog Data 
 //{{AFX_DATA(CStudent) 
 enum { IDD = IDD_STUDENT }; 
  // NOTE: the ClassWizard will add data members here 
 //}}AFX_DATA 
 
 
// Overrides 
 // ClassWizard generated virtual function overrides 
 //{{AFX_VIRTUAL(CStudent) 
 protected: 
 virtual void DoDataExchange(CDataExchange* pDX);     
    // DDX/DDV support 
 //}}AFX_VIRTUAL 
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// Implementation 
protected: 
 
 // Generated message map functions 
 //{{AFX_MSG(CStudent) 
  // NOTE: the ClassWizard will add  
  // member functions here 
 //}}AFX_MSG 
 DECLARE_MESSAGE_MAP() 
private: 
 int StudentID; 
}; 
 
//{{AFX_INSERT_LOCATION}} 
// Microsoft Visual C++ will insert additional declarations  

 // immediately before the previous line. 
 
#endif // !defined(AFX_STUDENT_H__EF84C76A_32B5_ 
  //  4779_A593_EF886F02D186__INCLUDED_) 

 
Source File: 
 

// Student.cpp : implementation file 
// 
 
#include "stdafx.h" 
#include "Example.h" 
#include "Student.h" 
 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THIS_FILE 
static char THIS_FILE[] = __FILE__; 
#endif 
 
///////////////////////////////////////////////////////////////// 
// CStudent dialog 
 
 
CStudent::CStudent(CWnd* pParent /*=NULL*/) 
 : CDialog(CStudent::IDD, pParent) 
{ 
 //{{AFX_DATA_INIT(CStudent) 
  // NOTE: the ClassWizard will add member    

    initialization here 
 //}}AFX_DATA_INIT 
} 
 
 
void CStudent::DoDataExchange(CDataExchange* pDX) 
{ 
 CDialog::DoDataExchange(pDX); 
 //{{AFX_DATA_MAP(CStudent) 
  // NOTE: the ClassWizard will add DDX and DDV calls  

   // here 
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 //}}AFX_DATA_MAP 
} 
 
 
BEGIN_MESSAGE_MAP(CStudent, CDialog) 
 //{{AFX_MSG_MAP(CStudent) 
  // NOTE: the ClassWizard will add message map macros  

   // here 
 //}}AFX_MSG_MAP 
END_MESSAGE_MAP() 
 
///////////////////////////////////////////////////////////////// 
// CStudent message handlers 
 
int CStudent::getStudentID() 
{ 
 
} 
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Differential Equations and 
Numerical Methods 

 

Section 1: Introduction to Differential Equations  
 
Many physical problems can be modeled with the aid of differential 

equations. As an example, let ( )y t  be the height of a ball above the ground. We 

know from physics that near the ground, the acceleration due to gravity is a 
constant 9.80 m/sg = . A simple model of the motion of the ball would then be  

( )y t g′′ = −  

If we can solve this differential equation, we can then simulate  the motion of the 
ball. We shall encounter many such differential equations in our course. Before 
we continue however, we would like to introduce some of the terminology of 
differential equations. We then discuss some numerical methods that can be used 
to solve differential equations. 
 
 A differential equation is an equation where the unknown is a function 
whose derivatives are present in the equation.  Examples of differential equations 
include 

• y g′′ = −  

• 0y y′′ + =  

• 0y y′ + =  

• 2 2 0t y ty t y′′ ′+ + =  
In general, it is difficult to solve a differential equation analytically; in fact though 
there are closed form solutions of the first three examples, the nonzero solutions 
of the fourth can not be written as any finite combination of rational functions, 
trigonometric functions, inverse trigonometric functions, exponential functions, 
or logarithmic functions.  
  

The order of a differential equation is the highest number of derivatives of 
the unknown that appear in the equation. Three of our examples are second order 
and one is first order. (Which equation is first order?) We begin our study by 
concentrating on first order equations; we will return to higher order equations 
later. 
  

Even a first order equation can be unsolvable; as an example, consider the 
equation 

( ) 1 1y t′ + = − . 

This equation has no solution because the square root of any real number can 
never be negative. However, the reason that this problem has no solution is not 
that it is a differential equation, but rather because of its algebraic form.  Thus, to 
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avoid difficulties that are essentially algebraic in nature, we will assume that all of 
our first order equations can be solved for the derivative of the unknown. As a 
consequence, we shall restrict our attention to first order differential equations of 
the form 

( ) ( )( ),y t f t y t′ = . 

As examples of this type of problem, we have the following: 
• y y′ =  

• 2 2 1y y y′ = + +  

• 2 1y t t′ = + −  

• 2 1y y t′ = + −  

Note that all of these are in the form ( ) ( )( ),y t f t y t′ = . Indeed 

• For y y′ =  we have ( ),f t y y= ; 

• For 2 2 1y y y′ = + +  we have ( ) 2, 2 1f t y y y= + + ; 

• For 2 1y t t′ = + −  we have ( ) 2, 1f t y t t= + − ; 

• For 2 1y y t′ = + −  we have ( ) 2, 1f t y y t= + − . 

Recall that a function can be of the form ( ),f t y  even if it has no explicit 

dependence on t  or on y , as we see in three of our four examples. 
 

Section 2: Initial Value Problems 
 
Consider a culture of bacteria, and let ( )y t  be the number of bacteria 

present at time t . We know that, given adequate living conditions, these bacteria 
will reproduce, and that their rate of growth is proportional to the number of 
bacteria already present. This yields a model of the form  

( ) ( )y t k y t′ = ⋅  

for some unknown constant k ; for simplicity we will assume that 1k =  so that 
our model becomes 

( ) ( )y t y t′ = . 

 
This problem can be solved by inspection- indeed what simple function is 

equal to its own derivative? One solution is the function ( ) ty t e= , but this is not 

the only solution. The function ( ) 2 ty t e= is a solution, as are ( ) ty t e= −  and 

( ) 9875 ty t e= . In fact, for any constant C , the function ( ) ty t Ce=  is a solution of 

our problem. This is a one-parameter family of solutions. In general first order 
equations will have a one-parameter family of solutions, while second order 
equations will have a two-parameter family of solutions, third order equations 
will have a three-parameter family of solutions and so on. [It should be noted 
that, while this is true in general, it is not always the case!] 



 

Can we use our model to determine the number of bacteria present when 
1t = ? Unfortunately the answer is no; not enough information has been given. 

The best we can say is that the solution is ( ) ty t Ce=  for some constant C , but we 

do not know the value of C . However, if we had one additional piece of 
information- say the number of bacteria at time 0t = , then we could answer the 
question. Indeed, suppose that there were 1000  bacteria at time 0t = . Then since 
the solution is ( ) ty t Ce= , we can simply substitute 0t =  and ( )0 1000y =  to 

discover that 1000C = . Then we know that at time 1t =  we have 1000e  bacteria. 
 
A first order initial-value problem is a first order differential equation 

together with the value of the solution at some particular time. Its general form is 

 
( ) ( )( )
( )0 0

,y t f t y t

y t y

⎧ ′ =⎪
⎨

=⎪⎩
. (1) 

In general, our models will result in initial value problems. 

Section 3: Euler’s Method 
 
Given a model in the form of an initial value problem like (1), we would 

like to use the computer to calculate the solution.  The first method we shall learn 
to calculate approximate solutions is Euler’s Method.  We choose a step size h , 
and then consider the times 0it t ih= + . We would like to find approximations iy  

( )ty  

( ) 00 yty =  

( )1ty  

1y  

0t  1t  

p 
Figure 1: Euler’s Method: The First Ste
43
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of our solution so that ( )i iy y t≈ . 

 
From the initial value problem (1), at time 0t , we know that the value of 

the solution is 0y . The differential equation then tells us the slope of the solution 

at 0t  is ( ) ( )0 0 0,y t f t y′ = . We  then proceed along the tangent line (drawn in red in 

figure 1) to time 1t  to obtain the value 1y . Since the tangent line approximates the 

function ( )y t , the value 1y  approximates the function y  at time 1t . 

 
The formula for 1y  is simple to derive. Because the red line is the tangent 

line to ( )y t  through ( )0 0,t y , its slope is ( ) ( )0 0 0,y t f t y′ = . On the other hand, 

because the red line passes through ( )0 0,t y  and ( )1 1,t y , its slope is 

1 0 1 0

1 0

y y y y
t t h
− −

=
−

. 

Thus 

( )1 0
0 0,y y f t y

h
−

=  

and hence 
( )1 0 0 0,y y h f t y= + ⋅ . 

 Now that we have found the approximation 1y  to ( )1y t , we can now try to 

find the approximation 2y  of ( )2y t  where 2 1 0 2t t h t h= + = + . To do so, we use the 

same process. In particular, if the solution passes through ( )( )1 1,t y t , then its 

tangent line through ( )1 1,t y  has slope ( ) ( )1 1 1,y t f t y′ = . We can proceed along this 

tangent line to time 2t  to obtain the value . As above, we see that 

( )2 1 1 1,y y h f t y= + ⋅ . 

  
We can then proceed inductively. The values of it  are determined by 

 0it t i h= + ⋅  (2) 

while the values of our approximations are given by  
 ( )1 1 1,i i i iy y h f t y− − −= + ⋅  (3) 

beginning with 1i = . 
 To see how this process proceeds, consider the following initial value 
problem: 

 
( )

( )

2

0 1

ty t
y

y

⋅⎧ ′ =⎪
⎨
⎪ =⎩

 (4) 
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To calculate the approximation, we can choose any positive step size; we shall 
choose a step size of 0.1h = . We shall implement four steps of Euler’s method 
and find the approximations to ( )0.1y , ( )0.2y , ( )0.3y  and ( )0.4y . 

 Comparing (4) with (1), we see that 0 0t = , 0 1y =  and ( ) 2, tf t y
y
⋅

= . From 

(2), we find that 1 0.1t = , 2 0.2t = , 3 0.3t = , and 4 0.4t = . Next, we use (3) to see that 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 0 0 0

2 1 1 1

3 2 2 2

4 3 3 3

2 0
, 1 0.1 1

1
2 0.1

, 1 0.1 1.02
1
2 0.2

, 1.02 0.1 1.05922
1.02

2 0.3
, 1.05922 0.1 1.11587

1.05922

y y h f t y

y y h f t y

y y h f t y

y y h f t y

⋅
= + ⋅ = + ⋅ =

⋅
= + ⋅ = + ⋅ =

⋅
= + ⋅ = + ⋅ =

⋅
= + ⋅ = + ⋅ =

 

If we compare these approximations to the exact solution ( ) 221 tty += , we 
obtain the following table. 
 

Approximate Solution Exact Solution Error 
11 =y  ( ) 00995.11.0 =y  ( ) 00995.01.01 =− yy  

02.12 =y  ( ) 03923.12.0 =y  ( ) 01923.02.02 =− yy  

05922.13 =y  ( ) 08628.13.0 =y  ( ) 02706.03.03 =− yy  

11587.14 =y  ( ) 14891.14.0 =y  ( ) 03304.04.04 =− yy  

  
Although we have calculated the approximations, an important question is 

whether or not they are accurate. Before we can use Euler’s method, we need to 
obtain some estimate of the resulting error. We can do so with the aid of Taylor’s 
Theorem.  

 
Indeed, consider the initial value problem (1). Apply Taylor’s Theorem to 

the solution ( )y t  at time 0t  to approximate ( )1y t . Then 

( )

4342144 344 21
11

)(),(

)()(

0
2

2
1

000

0
2

2
1

001

Ey

yhythfy

yhtyhyty

ξ′′++=

ξ′′+′+=
 

for some unknown 0ξ , so we can write 

 ( ) 111 Eyty +=  (4) 

where 1E  is the (unknown error), and 
21

1 2 max | |E h y′′≤ . 
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Now apply Taylor’s Theorem at 1t  to approximate ( )2y t . This gives us 

21
2 1 1 12( ) ( ) ( ) ( )y t y t hy t h y′ ′′= + + ξ  

for some unknown 1ξ . We then substitute the value for ( )1y t  that we obtained in 

(4), so that 
( ) ( )

( )
2

21
2 1 1 1 1 12

21
1 1 1 1 12

Not quite 

( ) , ( ) ( )

, ( ) ( )
y

y t y E hf t y t h y

y hf t y t E h y

′′= + + + ξ

′′= + + + ξ
1442443

. 

If the second term was ( )1 1,hf t y  instead of ( )( )1 1,hf t y t , then the first two terms 

together would be exactly 2y .  However, we can add and subtract ( )1 1,hf t y  to see 

that  

( ) ( )
2 2

21
2 1 1 1 1 1 1 1 1 12( ) , , ( ) ( , ) ( )

y E

y t y hf t y E h f t y t f t y h y′′= + + + − + ξ⎡ ⎤⎣ ⎦1442443 1444444442444444443
. 

Thus we can write 

222 )( Eyty +=  
where  

( ) 21
2 1 1 1 1 1 12, ( ) ( , ) ( )E E h f t y t f t y h y′′= + − + ξ⎡ ⎤⎣ ⎦ . 

  
How large can 2E  become? To determine this, we need to understand the 

behavior of the second term in out expression for 2E .  We shall impose the 

following condition on the function ( ),f t y . There is a constant L , called a 

Lipschitz Constant so that for every choice of t , y , and z  

( , ) ( , )f t y f t z L y z− ≤ − . 

In this case, we can see that 

( ) ( )1 1 1 1 1 1, ( ) ( , )f t y t f t y L y t y− ≤ −  

so that using (4) we find 

( )1 1 1 1 1, ( ) ( , )f t y t f t y LE− ≤  

Thus 
( ) yhEhLyhhLEEE ′′++≤′′++≤ max1max 2

2
1

1
2

2
1

112 . 

 
We can repeat this process. Indeed for any n  

( ) ( )
( ) ( )[ ]

44444444 344444444 2144 344 21
11

)(),()(,,

)()(,

)()()()(

2
2
1

2
2
1

2
2
1

1

++

ξ′′+−+++=

ξ′′+++=

ξ′′+′+=+

nn E

nnnnnn

y

nnn

nnnnn

nnnn

yhytftytfhEythfy

yhtythfEy

yhtyhtyty

 

so that  

111 )( +++ += nnn Eyty  
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where  

( ) 21
1 2, ( ) ( , ) ( )n n n n n n nE E h f t y t f t y h y+ ′′= + − + ξ⎡ ⎤⎣ ⎦ . 

Thus 

( )
( )

21
1 2

21
2

max | |

1 max | |
n n n n

n

E E hL y t y h y

hL E h y
+ ′′≤ + − +

′′≤ + +
. 

 
As a consequence, we shown that 

( )n n ny t y E= +  

with the recursive relationship for the errors nE  
21

1 2 max | |E h y′′≤ , 

and for any 1n ≥  
 ( ) 21

1 21 max | |n nE hL E h y+ ′′≤ + + . (5) 

For any index i , this equation with 1n i= −  says that 
( ) 21

1 21 max | |i iE hL E h y− ′′≤ + + . 

Thus if we apply (5) once more, now with 2n i= −  we find that 

( ) ( )
( ) ( )

2 21 1
2 2 2

2 21
2 2

1 1 max | | max | |

1 1 1 max | |

i i

i

E hL hL E h y h y

hL E hL h y

−

−

′′ ′′⎡ ⎤≤ + + + +⎣ ⎦

′′≤ + + + +⎡ ⎤⎣ ⎦
. 

Applying (5) again, now with 3n i= − , we find 

( ) ( ) ( )

( ) ( ) ( )

2 2 21 1
3 2 2

3 2 21
3 2

1 1 max | | 1 1 max | |

1 1 1 1 max | |

i i

i

E hL hL E h y hL h y

hL E hL hL h y

−

−

′′ ′′⎡ ⎤≤ + + + + + +⎡ ⎤⎣ ⎦⎣ ⎦
⎡ ⎤ ′′≤ + + + + + +⎣ ⎦

. 

If we repeat this process, we find that 

( ) ( ) ( )2 121
2 max | | 1 1 1 1 i

iE h y hL hL hL −⎡ ⎤′′≤ + + + + + + +⎣ ⎦L  

Thus, using the formula
1

2 11
1

i
i ss s s

s

+ −
+ + + + =

−
L , we see that 

( )max | | 1 1
2

i
i

h yE hL
L

′′ ⎡ ⎤≤ + −⎣ ⎦ . 

It is an exercise to use Taylor’s Theorem to prove that 1xe x≥ +  and ( )1 m mxx e+ ≤  ; 

thus 

0( )

max | | 1
2

max | | 1
2

i

ihL
i

L t t

h yE e
L

h y e
L

−

′′
⎡ ⎤≤ −⎣ ⎦

′′
⎡ ⎤≤ −⎣ ⎦

 

where we have used the fact that 0it t ih− = . Since ( )i i iE y t y= − , we have proven 

the following result. 
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Euler’s Method. Given the initial value problem 

( ) ( )( )
( )0 0

,y t f t y t

y t y

⎧ ′ =⎪
⎨

=⎪⎩
, 

assume that there is a Lipschitz constant L  so that ( , ) ( , )f t y f t z L y z− ≤ −  for 

every choice of t , y , and z  For any step size 0h > , define 

0it t i h= + ⋅  

and 
( )1 1 1,i i i iy y h f t y− − −= + ⋅ . 

Then 

( ) 0( )max | | 1
2

iL t t
i i

h yy t y e
L

−′′
⎡ ⎤− ≤ −⎣ ⎦ . 

 
What does this result tell us? First it tells us that the approximations 

produced by Euler’s method do, in fact, approximate the solutions of the initial-
value problem. Moreover, the smaller h  becomes, the smaller the difference 
between iy  and ( )iy t .  On the other hand, the farther away it  is from 0t , the 

larger the difference may become. 
 
The next thing to note is that this is how large the error might be, not how 

large the error is.  It may be the case that the right side of the estimate  

( ) 0( )max | | 1
2

iL t t
i i

h yy t y e
L

−′′
⎡ ⎤− ≤ −⎣ ⎦  

is large, even when the difference ( )i iy t y−  is actually zero.  

  
Further, the right hand side is almost never calculated in practice, in no 

small part because it depends on max y′′ . If we know ( )y t  well enough to 

calculate max y′′ , we probably do not need Euler’s method to construct an 

approximation.  However, even without knowing max y′′  exactly, we can still use 

the result. For example, this result tells us that, when the step size is halved, the 
maximum error is also halved. In general, we say that if there is a constant C  so 

that ( )f t Ct≤ , we say that ( ) ( )f t O t= , or that f  is big-O of t .  It tells us that, if 

we want to double our accuracy, we will have to halve our step size- thus doubling 
our work. 
  

The estimate  

( ) 0( )max | | 1
2

iL t t
i i

h yy t y e
L

−′′
⎡ ⎤− ≤ −⎣ ⎦  
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tells us that, to get the best approximation of ( )iy t , we should calculate 

approximations iy  with different values of h , and then see what happens as h  

tends to zero. This is how we first learned to estimate limits, by calculating the 
result for values of h  closer and closer to zero.  
  

There is one difficulty with this approach however. All of our analysis was 
predicated on the assumption that the values of iy  could be calculated exactly. 

When implemented on a machine however, we must think about round-off error. 
In fact, if there is a round-off error of no more than δ  at each step, then our 
result must be modified to read  

( ) 0 0( ) ( )max
1

2
n nL t t L t t

n n

h y
y t y e e

L hL
− −′′⎛ ⎞δ ⎡ ⎤− ≤ + − + δ⎜ ⎟ ⎣ ⎦

⎝ ⎠
. 

Note that now, as h  tends to zero, the error tends to infinity. Usually, this is not a 

concern, because the error decreases for 
2

max
h

y
δ

<
′′

 and only starts to increase 

for values of h  smaller than this. 

Section 4: Improving Euler’s Method 
 

 There are other methods that can be used to solve first-order initial-value 
problems besides Euler’s method. The first we shall present is called Backwards 
Euler, or Implicit Euler.  Recall Euler’s method 

0it t i h= + ⋅  

( )1 1 1,i i i iy y h f t y− − −= + ⋅ . 

The slope of the line through ( )1 1,i it y− −  and ( ),i it y  is equal to the slope provided 

by the differential equation at ( )1 1,i it y− − , namely ( )1 1,i if t y− − . In Backwards Euler, 

we instead require that the slope of the line through ( )1 1,i it y− −  and ( ),i it y  is equal 

to the slope provided by the differential equation at ( ),i it y , namely ( ),i if t y . This 

gives us the following. 
 
Implicit Euler’s Method. Given the initial value problem 

( ) ( )( )
( )0 0

,y t f t y t

y t y

⎧ ′ =⎪
⎨

=⎪⎩
, 

choose a step size h , and calculate 

0it t i h= + ⋅  

and 
( )1 ,i i i iy y h f t y−= + ⋅ . 

Then ( ) ( )i iy t y O h− = . 
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 The first characteristic of Implicit Euler is that it is implicit, meaning that 
it does not provide the value of iy , but instead provides an equation that iy  must 

satisfy. We must then use some other method (like Newton’s method) to actually 
solve the equation. This makes Implicit Euler much more difficult to implement. 
Further, the error for Implicit Euler is the same order as the error for Euler’s 
method; both errors are ( )O h .  

 
With these facts, why introduce Implicit Euler at all?  One desired 

characteristic of a good numerical method for solving differential equations 
would be that if the solution of the differential equation ( )y t  tended to zero as 

t →∞ , then we would expect that 0iy →  as i →∞ . This is a stability condition 

for the method. 
 
Consider the simple initial value problem 

( ) ( )
( )

10

0

y t y t

y A

′ = −⎧⎪
⎨

=⎪⎩
. 

The solution of this problem is ( ) 10ty t Ae−= , which can be verified by 

substitution.  Clearly our solution ( )y t  tends to zero as t →∞ . If we apply Euler’s 

method to this problem, we see that 
( )1 110 1 10i i i i iy y hy h y− − −= − = − . 

Thus, if we choose 0.25h = , we see that 
( ) 1 11 10 0.25 1.5i i iy y y− −= − ⋅ = − , 

and thus 
1.5i iy y= , 

meaning that iy →∞  as i →∞ . This is clearly different than the behavior for the 

solution! What has occurred here is that the choice of the step size is too large for 
the problem; if 0.2h < , then we would have 0iy →  as i →∞ . 

  
Now let us compare what would occur with Implicit Euler. In this case 

1 10i i iy y hy−= −  

so that 

1
1

1 10i iy y
h −=

+
 

and thus 0iy →  as i →∞  for any choice of h . 

 
 The improved stability of Implicit Euler often makes up for the additional 

work needed to implement an implicit method.  However, we shall not 
implement it in this course. 
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Euler’s method requires that the slope of the line through ( )1 1,i it y− −  and 

( ),i it y  is equal to ( )1 1,i if t y− −  which is the slope of the solution through ( )1 1,i it y− −  

while Implicit Euler uses ( ),i if t y  which is the slope of the solution through 

( ),i it y . Perhaps we can improve the accuracy of our result by using data from 

both points; for example by using the method 

 ( ) ( )( )1 1 1, ,
2i i i i i i
hy y f t y f t y− − −= + + . (6) 

Like Implicit Euler, this method is implicit, because the unknown iy  appears on 

both sides of the equation. One way to make this method explicit is to replace the 
value of iy  that appears on the right side by some approximation of iy  that we 

can explicitly calculate. This idea is the basis of a method called the Improved 
Euler method. It proceeds in two steps- first we use Euler’s method to calculate 
an approximation to iy ; we call it iy%  

 ( )1 1 1,i i i iy y hf t y− − −= +% .  

We then use iy%  in the right side of (6) instead of iy  to obtain our final 

approximation 

( ) ( )( )1 1 1, ,
2i i i i i i
hy y f t y f t y− − −= + + % . 

The result is called the Improved Euler Method. 
 
Improved Euler’s Method. Given the initial value problem 

( ) ( )( )
( )0 0

,y t f t y t

y t y

⎧ ′ =⎪
⎨

=⎪⎩
, 

choose a step size h , and calculate 

0it t i h= + ⋅ , 

( )1 1 1,i i i iy y hf t y− − −= +%  

( ) ( )( )1 1 1, ,
2i i i i i i
hy y f t y f t y− − −= + + % .  

Then ( ) ( )2
i iy t y O h− = . 

 
 Like Euler’s Method, the Improved Euler Method is explicit and suffers 
from the same stability problem. The big improvement in Improved Euler 
however is its increased accuracy. Unlike Euler and Implicit Euler, the Improved 
Euler Method is accurate to ( )2O h .  This is a dramatic improvement in accuracy. 

With Euler’s method, if we wanted to decrease our maximum error by a factor of 
100, we would need to cut the step size by 100, and do 100 times as much work. 
However, with Improved Euler, to decrease our maximum error by a factor of 
100, we only need to cut our step size by a factor of 10, and thus we only do 10 
times the work- a dramatic savings. 
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Section 5: Runge-Kutta Methods 
 
Despite the increased accuracy of the Improved Euler method, it is not 

used in practice. Instead, a more sophisticated method, called the Runge-Kutta 
method of order 4 is used. It is similar in spirit to Improved Euler, but averages 
the slope at four different points, rather than just two.  

 
The Runge-Kutta Method of Order 4: . Given the initial value problem 

( ) ( )( )
( )0 0

,y t f t y t

y t y

⎧ ′ =⎪
⎨

=⎪⎩
, 

choose a step size h , and calculate 

0it t i h= + ⋅ . 

To find iy , knowing 1iy − , first calculate 

( )
( )
( )
( )

1 1

2 1 1 12 2

3 1 1 22 2

4 1 1 3

,

,

,

,

i i i

h h
i i

h h
i i

i i

k f t y

k f t y k

k f t y k

k f t h y hk

− −

− −

− −

− −

=

= + +

= + +

= + +

 

and set  

( )1 1 2 3 42 2
6i i
hy y k k k k−= + + + + . 

Then ( ) ( )4
i iy t y O h− = . 

 
This is an explicit method and the error is at most ( )4O h . To see the 

advantage of this high accuracy, note that if we were using Euler’s method and  
wanted to decrease our maximum error by a factor of 10,000, we would need to 
do 10,000 times as much work; if we were using Improved Euler we would need 
100 times while had we been using Runge-Kutta of order 4, just 10 times as much 
work would be required. 

 
This increase in efficiency is partially offset by the fact that one step in the 

Runge-Kutta method of order 4 has four intermediate calculations, which is 
much more work than one step in Euler or in Improved Euler.  

 
There are explicit Runge-Kutta methods of all orders, but the others are 

rarely used. The reason is that more and more intermediate calculations are 
needed to increase the order- an order 5 method needs 6 intermediate 
calculations, an order 6 method needs 7 intermediate calculations, and an order 7 
method needs 9 intermediate calculations. 
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To see how Runge-Kutta works in practice, let us return to the problem (4) 

( )

( )

2

0 1

ty t
y

y

⋅⎧ ′ =⎪
⎨
⎪ =⎩

 

and use Runge-Kutta with 0.1h =  to approximate ( )0.1y . We already know that 

0 0t = , and 1 0.1t = ; we also know that ( ), 2 /f t y t y= . Thus, to calculate 1y , we 

first find 

( )

( ) ( )

( ) ( )

( ) ( )

1 0 0

2 0 0 12 2

3 0 0 22 2

4 0 0 3

2 0, 0,
1

2 0 0.05
, 0.1,

1 0.05 0
2 0 0.05

, 0.995025,
1 0.05 0.1

2 0 0.1
, 0.1980295566.

1 0.1 0.995025

h h

h h

k f t y

k f t y k

k f t y k

k f t h y hk

⋅
= = =

⋅ +
= + + = =

+ ⋅
⋅ +

= + + = =
+ ⋅
⋅ +

= + + = =
+ ⋅

 

Thus 

( )1 0 0 1 2 32 2 1.0099505755
6
hy y k k k k= + + + + = . 

 
 If we continue, we obtain the following table. 
 

Approximate Solution Exact Solution Error 
00995058.11 =y  ( ) 00995049.11.0 =y  ( ) 00000009.01.01 =− yy  

03923077.12 =y  ( ) 03923049.12.0 =y  ( ) 00000028.02.02 =− yy  

08627858.13 =y  ( ) 08627805.13.0 =y  ( ) 00000053.03.03 =− yy  

14891326.14 =y  ( ) 14891253.14.0 =y  ( ) 00000073.04.04 =− yy  

 
Note the increase in accuracy over Euler’s method. 

Section 6: Higher Order Equations and Systems of Equations 
 
All of the methods was have discussed so far are for first order equations. 

How do we proceed with higher order equations?  
 
Consider the equation 

0y y′′ + = . 
We expect that this equation has a two parameter family of solutions, and in fact, 
it does- the general solution is 

( ) cos siny t A t B t= +  
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for any pair of constants A  and B ; this can be verified by substitution. To choose 
a particular solution, we need to determine the values of A  and B ; as a 
consequence we need two additional pieces of information. 
  

One type of problem is called an initial-value problem. In this case, we are 
given the value of the function and the value of the derivative at a particular 
point. As an example, consider 

( )
( )

0
0 1

0 2

y y
y

y

⎧ ′′ + =
⎪

=⎨
⎪ ′ =⎩

. 

It is easy to check that the particular solution is ( ) cos 2siny t t t= + . No matter 

what values we choose for ( )0y  and ( )0y′ , we can solve this problem. 

  
A second type of problem is called a boundary-value problem. Here we are 

given values of the function at two different points. As an example, consider 

( )
( )

0
0 0

/ 2 3

y y
y

y

⎧ ′′ + =
⎪

=⎨
⎪ π =⎩

. 

Here, we can check that the solution is ( ) 3siny t t= . However, we could also have 

the problem 

( )
( )

0
0 0

0

y y
y

y

⎧ ′′ + =
⎪

=⎨
⎪ π =⎩

. 

If this problem can be solved, then we need to find values of A  and B  that satisfy 
the boundary conditions. Because 

( )
( )
0 cos 0 sin 0

cos sin

y A B A

y A B A

= + =

π = π+ π = −
 

we see that the solution is ( ) siny t B t=  for any choice of B , so this problem does 

not have a unique solution. On the other hand, we could also try to solve the 
problem 

( )
( )

0
0 0

1

y y
y

y

⎧ ′′ + =
⎪

=⎨
⎪ π =⎩

. 

In this case, we would need 0A =  from the condition ( )0 0y =  and 1A = −  from 

the condition ( ) 1y π = ; thus this problem has no solution. As you can see, 

boundary-value problems need not have a unique solution; for this reason we 
shall not consider boundary-value problems further. 



 55

 
 How can we solve a second-order initial-value problem? Consider the 
problem 

( )
( )

0
0 1

0 0

y ty y
y

y

⎧ ′′ ′+ + =
⎪

=⎨
⎪ ′ =⎩

. 

Our technique is to introduce a new variable, say ( )u t , so that ( ) ( )u t y t′= . If we 

do so, then our differential equation becomes 
0u tu y′ + + = . 

Thus, if we solve, we find that we have the pair of equations 
u tu y
y u
′ = − −⎧

⎨ ′ =⎩
. 

The key idea now, is to think of the pair of variables u  and y  as a single variable 

u
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Then we have the first order system 

 

( )
0

0
1

u tu y
y u

u
y

⎧ ′ − −⎛ ⎞ ⎛ ⎞⎪ =⎜ ⎟ ⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎨
⎪⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠ ⎝ ⎠⎩

. (7) 

We can then solve this problem using any the methods we have learned for first 
order equations.  Let us illustrate this process by finding an approximation to 
( )0.3y  using Euler’s method with a step size of 0.1h = . 

 
 Comparing (7) with (1), we see that 0 0t = , that 

0

0
1

u
y

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 

and  

,
u tu y

f t
y u

⎛ ⎞ − −⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

Since 0.1h = , we know that 0 0.1t = , 1 0.1t = , 2 0.2t = , and 3 0.3t = .  Looking at (1) 

once again, we see that 

0 0 0 0
0

001 0 0

,
u t u yu u u

h f t
uy y y y

⎛ ⎞ − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⋅ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

so that 

1

0 0 0 1 0.1
0.1

1 0 1
u
y

− ⋅ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. 

Continuing, we find that  
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1 1 1 1
0

112 1 1

,
u t u yu u u

h f t
uy y y y

⎛ ⎞ − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⋅ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

so that 

( )
2

0.1 0.1 0.099 0.1990.1 0.1 1
0.1

1 1 0.01 0.990.1
u
y

− − − −⎛− ⋅ − − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⋅ = + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

Thus 

( )
3

0.199 0.294020.2 0.199 0.99
0.1

0.99 0.97010.199
u
y

− −⎛− ⋅ − − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⋅ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

We can then conclude that ( )3 3 0.9701y t y≈ = . 

 
 Let us also illustrate how to use approximate ( )0.1y  using the Runge-

Kutta method of order 4. In this case, 1k , 2k , 3k  and 4k  will all also be pairs. 

( )

1 0
0

2 0 1
0

0 0 0 1 1
, 0,

1 0 0

0 1
, 0.05, 0.05

1 02 2

0.05 0.05 10.05 0.9975
0.05,

1 0.050.05

u
k f t f

y

uh hk f t k f
y

f

⎛ ⎞ ⎛ ⎞ − ⋅ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

− ⋅ − −⎛ ⎞⎛ − ⎞ −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ −−⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

( )

3 0 2
0

4 0 3
0

0 0.9975
, 0.05, 0.05

1 0.052 2

0.05 0.049875 0.99750.049875 0.999994
0.05,

0.9975 0.0498750.049875

,

uh hk f t k f
y

f

u
k f t h hk

y

⎟
⎠

⎛ ⎞ ⎛ − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

− ⋅ − −⎛ ⎞⎛ − ⎞ −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎛ ⎞

= + +⎜ ⎜ ⎟
⎝ ⎠⎝

( )

0 0.999994
0.1, 0.1

1 0.049875

0.1 0.0999994 0.9950130.0999994 0.985013
0.1,

0.995013 0.09999940.0999994

f

f

⎞ ⎛ − ⎞⎛ ⎞ ⎛ ⎞
= +⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠⎠

− ⋅ − −⎛ ⎞⎛ − ⎞ −⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠  

From the Runge-Kutta, we see that 

( )0 1 2 3
1 0

2 2
6

0 1 0.9975 0.999994 0.9850130.1 2 2
1 0 0.05 0.049875 0.09999946

0.0996667
.

0.980004

u u h k k k k
y y

⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ − − − − ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

We conclude that ( )1 1 0.980004y t y≈ = . 



 

Section 7: Vectors 
  

The notion of using quantities in pair as we have done above can be made 
more precise. A vector vr  in two dimensions is a pair of real numbers, and we 

write  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y
x

vr . We put the arrow above the letter vr  to remind ourselves that vr  is 

a vector. In print, vectors are often written in boldface without the arrow, giving 

us 
x
y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

v . 

 
Vectors in two dimensions have a geometric interpretation; the line 

segment from the origin to the point ),( yx  is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y
x

vr . Similarly, for any other 

point ),( ba , the segment from ),( ba  to ),( ybxa ++  is also ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y
x

vr . 

 

We add vectors in the expecte

x a x a
v w

y b y b
+⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

r r
.  

This has a simple geometric in
at the origin, and wr  as a vecto
vector starting at the origin, a

 We multiply vectors by

real number and 
x

v
y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

r
 is a v

),( yx

),( ba

),( ybxa ++

s 
Figure 2: Vector
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d way; if 
x

v
y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

r
 and 

a
w

b
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

r
we define  

terpretation. If we represent vr  as a vector starting 
r starting at the endpoint of vr , then v w+

r r
 is the 

nd ending at the endpoint of wr , as seen in Figure 3. 
 

 real numbers in the expected way as well. If λ  is a 

ector, then the vector vλr  is 
x

v
y

λ⎛ ⎞
λ = ⎜ ⎟λ⎝ ⎠

r
 



 

 
This has a simple geometric int
at the origin, and wr  as a vector
vector starting at the origin, an

This also has a geometric inter

 

1
2 vr  

vr  

vr

wr
v w+r r
Figure 3: Adding vectors
erpretation. If we represent vr  as a vector starting 
 starting at the endpoint of vr , then v w+r r

 is the 
d ending at the endpoint of wr , as seen in Figure 3. 

pretation. If we represent the vector 
x

v
y

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

r
 as a 

2vr

v−r

s 
Figure 4: Multiplying vectors by real number
58
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segment starting at the origin, then the vector 2vr  can be represented as a vector 
starting at the origin but twice as long. Similarly, the vector 1

2 vr  can be 

represented as a vector starting at the origin but half as long, while v−r  can be 
represented by a vector starting at the origin of the same length, but pointing in 
the opposite direction as in Figure 4. 
 

Finally, we define the length of the vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y
x

vr  by  

22 yxv +=
r

. 

A vector of length 1 that points in the same direction as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

y
x

vr  is  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
=

22

22

22

1

yx

y
yx

x

y
x

yx
vr . 

Assignments 

1. Verify the formula 
1

2 11
1

i
i ss s s

s

+ −
+ + + + =

−
L . 

2. Use Taylor’s Theorem to prove that 1xe x≥ +  for 0x ≥ . [Hint: xe  is 
positive for all values of x .] 

3. Prove that the error for Euler’s method with round-off error decreases 

for 
2

max
h

y
δ

<
′′

 and increases thereafter. [Hint: Find the value of h  with the 

minimum error.] 
4. Consider the initial-value problem  

( )
1

0 1
y yt
y
′ = +⎧⎪

⎨ =⎪⎩
. 

Use Euler’s method with a step size of 0.2h =  and a calculator to find an 
approximation of ( )1y . 

 5. Explain why, to solve the initial-value problem 

( ) ( )
( )0

y t y t

y A

′ = −λ⎧⎪
⎨

=⎪⎩
 

for 0λ > with Euler’s method, we must impose the requirement that 1 1h− λ < . 

[Hint: What happens to tAe−λ  as t →∞ ? What happens to iy  as i →∞ ?] 

6. Consider the initial-value problem  
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( )
1

0 1
y yt
y
′ = +⎧⎪

⎨ =⎪⎩
. 

Use Improved Euler’s method with a step size of 0.2h =  and a calculator to find 
an approximation of ( )1y . 

 7. Consider the function ( ) 2 cosf h h h= . Is ( ) ( )f h O h= ? Is ( ) ( )2f h O h= ? 

Is ( ) ( )3f h O h= ? Explain. 

 8.  Suppose we know that ( ) ( )2f h O h= . Do we know that 
1 1
2 4

f ⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

? 

Explain. 
 9. Consider the initial-value problem  

( )
1

0 1
y yt
y
′ = +⎧⎪

⎨ =⎪⎩
. 

Use the fourth-order Runge-Kutta method with a step size of 0.2h =  and a 
calculator to find an approximation of ( )0.2y . 

 Problems 10-12 refer to the initial-value problem 

( )
( )

1 0
0 0

0 1

y y y t
y

y

⎧ ′′ ′+ + − + =
⎪

=⎨
⎪ ′ =⎩

. 

10. Introduce an auxiliary variable, and write this problem as a first order 
system. 
 11. Use Euler’s method with a step size of 0.2h =  and a calculator to obtain 
an approximation to ( )1y . 

 12. Use the Runge-Kutta method of order four with a step size of 0.2h =  
and a calculator to obtain an approximation to ( )0.2y . 

13. Consider the initial-value problem  

( )

4 1
0 0

y t y
y

⎧ ′ = + +⎪
⎨

=⎪⎩
. 

Write a computer program that takes as input a step size, and a value of t . Your 
program should then calculate the Euler method approximation to ( )y t , the 

Improved Euler approximation to ( )y t , and the Fourth-Order Runge-Kutta 

approximation of ( )y t . 

 14.  Consider the initial-value problem 

( )
( )

21

0 1

y t t y

y

′⎧ = − −⎪
⎨

=⎪⎩
. 

Write a computer program that takes as input a step size, and a value of t . Your 
program should then calculate the Euler method approximation to ( )y t , the 
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Improved Euler approximation to ( )y t , and the Fourth-Order Runge-Kutta 

approximation of ( )y t . Compare your results with the exact solution 

( ) 22 2 1ty t e t t−= − + −  for different values of the step size h . Which method is 

most accurate as 0h ↓ ? Explain your answer. 
 15. Consider the initial-value problem  

( ) ( )
( )
( )

sin

0 0

0 1

y t y t t

y

y

′′ + =⎧
⎪

=⎨
⎪ ′ =⎩

. 

Write a computer program that takes as input a step size, and a value of t . Your 
program should then calculate the Euler method approximation to ( )y t  and the 

Fourth-Order Runge-Kutta approximation of ( )y t . Compare your result to the 

exact solution ( ) 3 sin cos
2 2

ty t t t= −  for different values of the step size h . Which 

method is most accurate as 0h ↓ ? Explain your answer. 
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Project: The Baseball Problem 
 

Section 1: Introduction 
 
If you wanted to wanted to hit a baseball the farthest, at what angle would 

you hit it? If we ignore air resistance, this is a simple problem that is commonly 
solved in Calculus 2. However, in the real world we can not ignore air resistance.  

 
Our goal is to construct a model for the motion of a real baseball, including 

the effects of air resistance. This model will be a system of ordinary differential 
equations. We can then use the numerical techniques we have already learned 
and write a computer program that will simulate the motion of our ball. This 
simulation can then be used to determine the optimal angle. 

 

Section 2: Viscosity 
 
How can we model the force of air resistance? We will construct our model 

using a surprisingly powerful tool called dimensional analysis.  
 
We shall begin by trying to understand the nature of drag forces in fluids. 

When one layer of a fluid moves at a different velocity than another layer, the two 
layers exert a force on one another. To simplify the discussion, consider the case 
where we have a fixed layer of fluid, and that there is a patch of fluid at a distance 
y  of area A  moving above it with velocity v , as in Figure 1. 

 
 

Fixed Fluid 

Patch of fluid with area A moving with velocity v 

height y 

Figure 1: The physical situation 
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The fixed fluid exerts a drag force on the moving fluid. Clearly, the size of 
that drag force will depend upon the area A  of the moving patch; we denote this 
drag force by ( )F A .  The shear stress of the fluid is the quantity  

( )
0

lim
A

F A
A→

τ = . 

If we use the MKS system of measurement, meaning that we measure using 
meters, kilograms, and seconds, then shear stress has units of 2N/m , or 
equivalently 2kg/m s⋅ . 

 
The drag force depends on the velocity v  of the moving patch, as well as 

the distance y  between the moving patch and the fixed fluid. If y  is large and v  
is small, we have a slowly moving fluid far away from the fixed fluid. In this case, 
we expect the drag forces to be small. On the other hand, if y  is small and v  is 
large we have a quickly moving fluid close to the fixed fluid. In this case we expect 
the drag force to be large. This suggests that the drag force depends on the ratio 

/v y . Taking the limit as 0y → , we then see that the shear stress should depend 
on  

( ) ( )
0 0

0
lim lim
y y

v y vv dv
y y dy→ →

−
= = , 

where we have used the fact that when 0y = , we know the fluid is fixed, and thus 
0v = . 

  
A fluid is called Newtonian if the shear stress varies linearly with the 

derivative of the velocity. In particular, a fluid is Newtonian if there is a constant 
µ  so that 

dv
dy

τ = µ . 

The constant µ  is called the dynamic viscosity of the fluid. Because 
/dv dy
τ

µ = , 

we know that the MKS units for µ  are 
( )

2kg/m s kg
m/s / m m s

⋅
=

⋅
. 

  
Many real fluids are Newtonian, including air, water, alcohol, glycerine 

and mercury. However, not all fluids are Newtonian; non-Newtonian fluids 
include toothpaste, and various paints and clays. 

 
The dynamic viscosity µ  is rarely encountered singly. More common is the 

ratio /µ ρ  where ρ  is the density of the fluid. This occurs sufficiently often that 
the ratio /ν = µ ρ  is called the kinematic viscosity of the fluid. In MKS units, 

because density is measured in 3kg/m , and dynamic viscosity is measured in 

kg/m s⋅ , the kinematic viscosity is measured in 2m / s  
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 Dynamic Viscosity µ   ( kg/m s⋅ ) Kinematic Viscosity ν  ( 2m / s ) 
Water 0.0010 1.0 × 10-6 

Air 0.000018 15 × 10-6 
Alcohol 0.0018 2.2 × 10-6 
Glycerine 0.85 680 × 10-6 
Mercury 0.0016 0.12 × 10-6 

Table 1: Viscosity for common fluids at room temperature. 
Source: L.D Landau & E.M. Lifshitz, Fluid Mechanics, Pregamon Press, 1987. 

 

Section 3: The Drag Force on a Baseball. 
 
With this in hand, we would like to determine the force of air resistance 

DF  on a moving baseball. The drag force should depend on the size of the ball, the 

speed of the ball, and the properties of air. This gives us the following list of  
quantities on which DF  might depend: 

• The speed v  of the baseball, 
• The size of the baseball- say the diameter d , 
• The density of the air ρ , and 

• The viscosity of the air- say the dynamic viscosity µ . 
Intuitively we expect that the mass m  of the ball has an effect on the flight of the 
ball; this is because the acceleration a  of the ball is related to the forces F  acting 
on it by the relationship F ma= . Changing the mass will change the acceleration 
of the ball, and hence its path. However we do not expect that a change in the 
mass change the force that acts on the ball. 
  

How can we use this information to determine the drag force? We know 
that the drag force does not care how we measure the quantities in the problem. 
Whether we measure speed in meters per second, or miles per hour, or even 
furlongs per fortnight, the drag force is the same. The number used to measure 
the force may be different in each case, but the actual force does not change.  For 
this reason we look for quantities which are dimensionless. A physical quantity is 
dimensionless if it does not depend on the units of measurement that are being 
used. The key idea is that, dimensionless quantities, like the actual drag force, do 
not depend on the units in which they are measured. 

 
To understand how dimensional analysis works, let us examine a simple 

example. We know that there is a relationship between the force F  acting on an 
object, its mass m , and its acceleration a . We shall discover the form of this 
relationship knowing only their units of measurement. In MKS units, force is 
measured in N, with 21 N=1 kg m/s⋅ ; mass is measured in kg , and acceleration in 
m/s . What dimensionless quantities can we form from the force F , the mass m , 
and the acceleration a ? Consider the quantity 

A B CF m a  
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for unknown real numbers A , B , and C . Plugging in the units, we see that 
A B CF m a  has the units  

( ) ( ) ( ) ( ) 2 2
2 2

kg m mkg kg m s
s s

A C
B A B A C A C+ + − −⋅⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

If this quantity is dimensionless, then we must have 
0
0

2 2 0

A B
A C

A C

+ =⎧
⎪ + =⎨
⎪− − =⎩

. 

This has the solution B A= − , C A= −  for any choice of the number A . Thus, if we 

set 1A = , we see that the quantity 1 1 FFm a
ma

− − =  is dimensionless. This means 

that 
F

ma
 is invariant under changes in the measuring system, and thus must be 

some constant. This then tells us that ( )constantF ma= ⋅ . Unfortunately this is as 

far as dimensional analysis will take us; however measurements show us that this 
constant is precisely one, and hence F ma= .  
 
 Now we shall perform a similar analysis on the more complicated question 
of the drag force on a real baseball. In this case, there are five quantities in 
question:  

Quantity  Units 
Drag force exerted by the air DF  kg m / s2 
Dynamic viscosity of the air µ  kg / m s 
Density of the air ρ  kg / m3 
Speed of the baseball v  m / s 
Diameter of the baseball d  m 

Table 2: Dimensions of the major quantities 

To form a dimensionless quantity, let us examine the units of the expression 
A B C D E

DF d vµ ρ  where A , B , C , D , and E  are unknowns. Examining Table 2, we 

find that this expression has units  

( ) ( ) ( )2 3 2kg m s .A B E A B C D E A B D+ + − + + − − − −
 

Thus our expression is dimensionless if and only if  
0,

2 3 0,
2 0.

A B E
A B C D E

A B D

+ + =⎧
⎪ − + + − =⎨
⎪ − − − =⎩

 

Applying the usual methods for solving linear systems of equations, we find that 
the solution is  
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,
,
2 ,
2 ,

.

A A
B B
C A B
D A B
E A B

=⎧
⎪ =⎪⎪ = − −⎨
⎪ = − −⎪

= − −⎪⎩

 

for any real numbers A  and B . 
 
Note that our solution has two arbitrary parameters, A and B. This 

behavior is typical when you have 3 equations in 5 variables. We can obtain two 
particular solutions, one with 1A =  and 0B = , and another with 0A =  and 1B = ; 
they are 

1
0

2
2
1

A
B
C
D
E

=⎧
⎪ =⎪⎪ = −⎨
⎪ = −⎪

= −⎪⎩

  and  

0
1

1
1
1

A
B
C
D
E

=⎧
⎪ =⎪⎪ = −⎨
⎪ = −⎪

= −⎪⎩

. 

 
 
We then discover that we can form two dimensionless quantities. The first 

is 2 2 .DF
d v ρ

If we replace the square of the diameter 2d  by the cross sectional area A 

of the baseball, we see that  2
DF

Av ρ
 is an equivalent dimensionless quantity. 

The second dimensionless quantity is .
dv
µ
ρ

Recall that the kinematic 

viscosity airν  is related to the dynamic viscosity µ  by air /ν = µ ρ , so we can rewrite 

this as air .
dv
ν

 This dimensionless ratio occurs so often in fluid dynamics that its 

reciprocal is called the Reynolds Number Re of the flow  

air

Re .dv dvρ
= =
ν µ

 

 

Thus, there are two dimensionless quantities for our flow, namely 2
DF

Av ρ
 

and 
air

Re .dv dvρ
= =
ν µ

 We conclude that there is some unknown function Φ  which 

relates the two, so that 
( )2 Re .DF A v= ρ Φ  
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Physicists define the drag coefficient 2DC = Φ  so that 

( )21
2 Re .D DF A v C= ρ  

 
Although dimensional analysis has shown us the form of the relationship 

for the drag force, the function DC  remains unknown. However, it can be found 

by taking careful measurement. Care must be taken, because it depends on the 
Reynolds number, which in turn depends on the velocity of the ball. For a smooth 
sphere, the drag coefficient DC  has been measured and shown to take on the 

following values. 

 
Figure 2:  Drag coefficient for a smooth sphere. 

Source: C. Frolich, Aerodynamic drag crisis and its possible effect of the flight of baseballs,  
Am. J. Phys. 52(4), April 1984. 

One interesting fact to note is the dramatic change in the drag coefficient 
from 0.5 to o.1 that takes place near 5.3 5Re 10 2 10= ≈ ⋅ . This corresponds to a 
velocity for a smooth sphere of the same size and mass of a baseball of around 
190 mi/hr. 

 
It would be interesting to know the actual drag coefficient for a real 

baseball; however this is unknown. It is known that the drag coefficient DC  

depends very sensitively on the degree of roughness of the ball. Below is a graph 
of DC  for various spheres with different degrees of roughness. Here roughness is 

measured as /k d  where k  is the height of the roughness elements, and d  is the 
diameter of the sphere.  
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• Type 1: / 0.0125k d = ;  
• Type 2: / 0.0500k d = ;  
• Type 3: / 0.0150k d = ;  
• Type 4: Smooth Sphere 
 

 
Figure 3: Drag coefficient for rough spheres. 

Source: C. Frolich, Aerodynamic drag crisis and its possible effect of the flight of baseballs,  
Am. J. Phys. 52(4), April 1984. 

 
Note that the dramatic changes in the drag coefficient now take place 

much earlier; for reference note that 42.67 m/s is approximately 95 mi/hr and 
that 10 m/s is approximately 22 mi/hr. It is thought that the changes in the drag 
coefficients for a real baseball are responsible for some of the effects seen in 
pitched baseballs, especially for knuckleballs. 

 
For simplicity in what follows, we shall assume 0.5DC = . 

Section 4: The One-Dimensional Problem 
 
Now that we know the force of air resistance that acts on a baseball, we can 

begin to answer our original question- at what angle should a ball be hit so that it 
travels farthest? Before tacking that general problem however, we shall start by 
creating a model for the motion of a baseball, where we assume that the ball can 
only move straight up and straight down 

 
In this case, there are only two forces that act on the baseball- 
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• The force of gravity gravF mg= , and 

• The drag force 21
2 .D DF C A v= ρ   

In our model, we shall make the simplification that 0.50DC = , though we have 

seen that, in actuality, the drag coefficient DC  varies with the Reynolds number 

(and hence with speed.) To finish, we need to determine the directions in which 
these forces act. Suppose that ( )y t  is the height of the ball, and ( ) ( )v t y t′=  is its 

velocity, with the distance and velocity in the upward direction being positive. We 
know that the force of gravity always acts downward, while the force of air 
resistance always acts against the motion of the ball. Thus, if the ball is moving 
upward, then the total force on the ball is 

21
2 DF mg C A v= − − ρ . 

On the other hand, if the ball is moving downward, then  
2

2
1 vACmgF D ρ+−= . 

Because F ma= , where a y′′=  is the acceleration of the baseball, we see that 
21

2
21

2

if 0

if 0
D

D

mg C A v v y
my

mg C A v v y

′⎧− − ρ = ≥⎪′′ = ⎨
′− + ρ = ≤⎪⎩

 

which we can simplify to obtain 

DC A v v
y g

m
ρ

′′ = − − . 

 
For a real baseball, moving through air, we have the following values: 
• 29.80 m/sg =    the acceleration of gravity, 
• 0.0732 md =   the diameter of a baseball, 

• 2 21
4 0.00421 mA d= π =  the cross sectional area of a baseball, 

• 0.145 kgm =   the mass of a baseball, 

• 31.29 kg/mρ =      the density of air, 

• 0.50DC =    the drag coefficient. 

 
Given our one-dimensional problem, how can we find its solution? 

Consider the pair of variables
y
v

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where y  is the height, and v  is velocity. We 

know that y v′ = ; further, our model requires DC A v v
y g

m
ρ

′′ = − − . Thus, we have 

the following system for 
y
v

⎛ ⎞
⎜ ⎟
⎝ ⎠
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( ) 0

0

0

D

v
y

C A v vv g
m

yy
v v

⎧ ⎛ ⎞′⎛ ⎞⎪ ⎜ ⎟= ρ⎜ ⎟⎪ ⎜ ⎟− −⎝ ⎠⎪ ⎜ ⎟
⎝ ⎠⎨

⎪ ⎛ ⎞⎛ ⎞⎪ = ⎜ ⎟⎜ ⎟⎪⎝ ⎠ ⎝ ⎠⎩

 

where 0y  is the initial height of the ball above the ground, and 0v  is the initial 

velocity of the ball. We can solve this system using the techniques we have 
already learned; in particular, we can use the fourth order Runge-Kutta method 
for systems. 
 

Section 5: The Two-Dimensional Problem 
 
Now let us consider the two-dimensional problem. Let x  be the horizontal 

position of the ball, and let y  be its vertical position.  We can represent the 

position of the baseball then by the vector 
x
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Similarly, let the horizontal 

velocity of the ball be u  and the vertical velocity of the ball be v ; then the velocity 

can be represented by the vector 
u
v
⎛ ⎞
⎜ ⎟
⎝ ⎠

.   

 
There are two forces acting on our baseball- the force of gravity and the 

force of air resistance. The size of the force due to gravity is mg , and it always 

x 

u

y 

v

Motion of the baseball 

Velocity of the baseball

Figure 4: Variables in the Two-Dimensional Problem 
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acts directly downward; thus we can represent it by the vector 
0
mg

⎛ ⎞
⎜ ⎟−⎝ ⎠

. 

 

What about air resistance? If the ball has velocity 
u
v
⎛ ⎞
⎜ ⎟
⎝ ⎠

, then its speed is 

2 2u v+ . Thus, the magnitude of the drag force is ( )2 21
2 DC A u vρ + . We know that 

the direction of the drag force is opposite the direction of motion. Consider the 

vector 
2 2

1 u
vu v
⎛ ⎞
⎜ ⎟

+ ⎝ ⎠
. This has length 1, and points in the direction of motion. Then 

a vector of size ( )2 21
2 DC A u vρ +  that points in the direction opposite the motion of 

the ball is  

( )2 21
2 2 2

2 21
2

1
D D

D

u
F C A u v

vu v
u

C A u v
v

⎛ ⎞
= − ρ + ⋅ ⎜ ⎟

+ ⎝ ⎠
⎛ ⎞

= − ρ + ⎜ ⎟
⎝ ⎠

. 

Using the relationship that F ma=
r r

, we find that our model is 

2 21
2

0
D

x u
m C A u v

y mg v

′′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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or equivalently 
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. 

 
This is a second-order system of equation. To solve it, we need to convert it 

to a first-order system. To do so, we consider the quartet of variables 

x
y
u
v

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, and 

find that we have the system 
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where 0 0 0, ,x y u , and 0v  are the initial positions and velocities of the ball. 

 

Assignments 
 
1. The period T  of a pendulum with length L  depends only on T , L  and 

the acceleration of gravity g . Use dimensional analysis to find the form of the 
relationship.  

Measurement shows us that, if 9.8 mL = , then 4  sT = π . Find a formula for 
T  in terms of L  and g . 

 
2. For the one-dimensional model, write a program that takes as input  

• The initial height of the baseball, 
• The initial velocity of the baseball, 
• An ending time, and 
• A step size 

and returns the fourth order Runge-Kutta method approximation to the height of 
the ball at the ending time. Check that your program returns reasonable values. 
Your program should have reasonable default values. 

If the ball is thrown upward with a velocity of 90 miles/hour, how high will 
it be from the ground two second later? 

 

Project 
 
Write a C++ program that simulates the motion of a ball under air 

resistance. 
 
As input, the program should take, 
• The initial height of the ball, 
• The speed at which it is hit, 
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• The angle at which it is hit, and 
• A step size. 
 
As output, the program should return 
• The horizontal distance that the ball has traveled when it hits the 
ground. 
 
Use your program to answer the following question- At what angle should 

a ball be hit to travel the farthest horizontal distance? 
• A well-hit ball will travel off the bat at a speed of 110 mph. 
• How accurate is your answer? How do you know that it is accurate? 
• A batted ball comes off the bat with speeds between 80 mph and 130 
mph. Do different initial velocities change the optimal angle? Is the change 
significant? 
 
You are then to write up a technical report that answers these questions. 

The report should describe the model, the numerical methods used to solve the 
problem, your program, and your results.  When answering these questions, you 
must address the question of how the choice of step size affects the result. 

 
The program should be written using good object oriented programming 

techniques. 
 



 75

Graphics 
 

Section 1: Introduction 
 
We shall now learn how to create simple programs that use the graphical 

capabilities of our computers. In this chapter, we shall write a program that 
creates a window to hold our drawing, draws a ball in that window, and moves 
that ball around in a circle when a button is pressed. 

 

Section 2: The Skeleton 
 
We begin by creating a new dialog based program called Graphics with the 

AppWizard. This gives us two classes, CGraphicsDlg and CGraphicsApp, 
together with one window whose ID is IDD_GRAPHICS_DIALOG. We shall use 
the existing window to hold the controls for our program, and shall create a new 
window to hold our graphics. 

 
To do so, we first create a new dialog window. Select the Resource Tab, 

Right-click on Dialog, and select “Insert Dialog”. Remove the default buttons and 
text from your box. To identify this window, right-click and select the Properties 
Tab for this dialog box. Give it the name IDD_GRAPH.  

 
We need to create a way for our program to access the resource we have 

just created. One way to do this is to create a new class that will perform the 
functions we would like. Use CTRL-W to start the class wizard while the new 
dialog box has the focus. It will tell you that IDD_GRAPH is a new resource, and 
will ask if you want to create a new class for it. Tell it to create a new class. Call 
this new class CGraph. Note that, by default it is derived from CDialog. 

 
To actually use this dialog window, we need to create a variable of type 

CGraph. The simplest approach, and the one that we will take, is to create a new 
private variable m_dlgGraph of type CGraph in CBallDlg.  As an alternative, 
note that the CBallDlg is instantiated in the InitInstance() function of the 
CBallApp class. We could do the same thing with our graphics window. 
Although this is cleaner from a design perspective, it does add some complexity. 
For example, how would the two instances of these classes pass data between 
them? We could pass a pointer to the first class to the constructor of the second 
class, so that the second class could reference the first. We shall not use this 
technique because of this added complexity. 

 
If we want our program to show the dialog box we have just created, we 

need to tell it to do so. Because we want this new dialog box to appear when the 
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program starts, we will add the necessary code to the OnInitDialog() method of 
the CBallDlg. This method is called when the dialog box is initialized for the first 
time. We modify it to read as follows 

 
BOOL CGraphicsDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 

// Set the icon for this dialog.  The framework does 
// this automatically when the application's main     
// window is not a dialog 

 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 
 m_dlgGraph.Create(IDD_GRAPH); 
 m_dlgGraph.ShowWindow(SW_SHOW); 
  

return TRUE;  // return TRUE  unless you set the 
 // focus to a control 

} 
 

where our addition is outlined. The first line, 
m_dlgGraph.Create(IDD_GRAPH)associates the resource IDD_GRAPH with 
the variable m_dlgGraph. The second tells the variable m_dlgGraph to execute 
its ShowWindow command, which actually causes the window to be displayed. 
Other options that can be passed to the ShowWindow command include  

• SW_HIDE which hides the window, 
• SW_MINIMIZE, which minimizes the window, and 
• SW_RESTORE which returns the window to its original, unmaximized 
and unminimized position and size. 

Other allowed options are described in the MSDN help system. 
  

We can adjust the starting position of the dialog box on the screen by 
going to the dialog box, selecting the properties tab, and adjusting the x-position 
and y-position. 

 

Section 3: Important Variable Types 
 

When working with graphics, there are three important variable types that 
we need to understand. First is CPoint, which is just a pair of integers used to 
represent a point on the screen. If we wish we can pass an argument when we 
create our CPoint variable. Consider the code fragment: 

 
CPoint Point1; 
CPoint Point2(10,100); 
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In this example, Point1 is uninitialized, while Point2 has the value (10,100). It 
should be noted that, by default, Windows measures coordinates from the top 
right hand corner of a window, with increasing x coordinates moving us to the 
right, while increasing y coordinates moving us down. This differs from the usual 
notion of a Cartesian coordinate system, and we will need to take this into 
account when drawing graphs. 
 

Our next important variable type is CRect, which represents a 
rectangular region. In addition to the default constructor, we can also use the 
following methods to create a CRect. 
 

CRect rectangle1(TopLeft,BottomRight)  
CRect rectangle2(left, top, right, bottom) 

 
Here TopLeft and BottomRight are CPoint variables for the top-left and 
bottom-right corners of rectangle1. On the other hand, left, top, right, 
and bottom are integers describing the boundaries of rectangle2. 
 

Finally, a CDC represents a device context. Rather than send messages 
about drawing objects directly to the hardware, we use a device context that 
handles the interaction. This means that, as programmers, we do not need to 
know the precise details of the hardware; moreover we can use the same set of 
commands to draw to a printer as to a monitor. We shall encounter CPaintDC, 
which is derived from CDC. Basically, this is CDC with added features so that we 
can avoid some technicalities. We will use the methods of CDC to actually draw to 
the screen. This is a very complex class with many different methods. We shall 
introduce those methods that we require as we use them. 

 

Section 4: The Drawing Process 
 
Because windows can be covered and uncovered as they execute, each 

windows program must be able to redraw itself whenever called upon to do so. 
Windows tells a window to redraw itself by sending a message, called WM_PAINT. 
For CBallDlg, this is handled by a method that the class inherits from its parent 
class CDialog. Our graphics window however, will have to override this default 
function.  

 
In the class view, right-click on CGraph, and select “Add Windows 

Message Handler”.  Select WM_PAINT, and click “Add and Edit”.  The result is a 
function called OnPaint() which will be called whenever the WM_PAINT 
message is issued. To add some function to the OnPaint() method, let us begin 
with a simple exercise, and add the command  dc.Ellipse(0,0,20,20) after 
the TODO comment, giving us the following code. 
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void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
  
 // TODO: Add your message handler code here 
 
 dc.Ellipse(0,0,100,100); 
  
 // Do not call CDialog::OnPaint() for painting messages 
} 

 
This tells the device context to draw an Ellipse. Ellipse is a method of CDC 
inherited by CPaintDC, and can take four parameters; they are the integers (left, 
top, right, bottom) that represent the edges of the ellipse. If we compile and run 
the program, we are presented with a dialog like the one in figure 1. 
 

 
Figure 1: Result of running our simple program 

 
Suppose that we want to change the color of the ellipse. We can do this by 

changing the brush. Each device context has a brush which it uses whenever 
called upon to draw something. However, only one brush can be used by a device 
context at any one time. We can define the attributes if a brush by creating an 
appropriate variable of type CBrush. Modify the OnPaint() method as follows. 

 
void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
  
 // TODO: Add your message handler code here 
  
 CBrush *OldBrush; 
 CBrush BlueBrush; 
 BlueBrush.CreateSolidBrush(RGB(0,0,255)); 
 OldBrush = dc.SelectObject(&BlueBrush); 
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 dc.Ellipse(0,0,100,100); 
  
 dc.SelectObject(OldBrush); 
 

// Do not call CDialog::OnPaint() for painting 
messages 

} 
 

First we create a pointer to the CBrush called OldBrush. We will use that 
variable to hold the current brush. When we are finished, we will need to reset 
the brush back to this value. We then create a variable of type CBrush called 
BlueBrush; this will hold the brush we will use to draw our ellipse.  Next we use 
the CreateSolidBrush() method from CBrush to create a solid color brush. 
We could also use methods like CreateHatchBrush() or 
CreatePatternBrush() to patterned brushes. The argument to 
CreateSolidBrush, namely RGB(0,0,255), is a color directive. It specifies 
the amount of red, green, and blue used to create the color, where each variable 
lies in the range 0-255. Our brush has no red, no green, and the maximum 
amount of blue, so it will be a nice blue color. 
 

Our last command in the first box loads our newly created BlueBrush 
into memory. Note that the address of BlueBrush is being passed as the 
argument. Whenever the SelectObject function is called, it returns a pointer 
to the previous value, which we store in OldBrush. We need to do this, because 
we want to make sure that we reset the brush to its original value when we are 
finished. 

 
Finally, after the command to create the ellipse we have 

dc.SelectObject(OldBrush). This returns the original brush to its place. 
Since we do not need to know the address of BlueBrush (we can get this by 
asking for &BlueBrush) we ignore the return value passed by SelectObject. 
 

If we compile and run our program, we will be presented with a result like 
figure 1, but with a blue ball instead of a white ball. 

 

Section 5: Animation 
 
Now we want to animate our result. To do so, we begin by creating a 

variable to hold the center of the ellipse we plan to draw. Add a private variable of 
type CPoint to CGraph; call it m_ptCenter. Also add a private variable of type 
int to CGraph called m_iRadius. To initialize these variables we need to 
modify the constructor. Consider the following code 

 
CGraph::CGraph(CWnd* pParent /*=NULL*/) 
 : CDialog(CGraph::IDD, pParent) 
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{ 
 //{{AFX_DATA_INIT(CGraph) 

// NOTE: the ClassWizard will add member 
initialization here 

 //}}AFX_DATA_INIT 
 
 m_ptCenter.x = 100; 
 m_ptCenter.y = 100; 
 m_iRadius = 10; 
} 

 
where the boxed material is new. 

 
We now modify the OnPaint() method to use these variables to draw our 

ellipse rather than the hard-coded values we had used previously. Modify that 
method so that it now reads as follows. 

 
void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
  
 // TODO: Add your message handler code here 
  
 CBrush *OldBrush; 
 CBrush BlueBrush; 
 BlueBrush.CreateSolidBrush(RGB(0,0,255)); 
 OldBrush = dc.SelectObject(&BlueBrush); 
   
 CRect ball(m_ptCenter,m_ptCenter); 
 ball.InflateRect(m_iRadius,m_iRadius); 
 dc.Ellipse(ball); 
 
 dc.SelectObject(OldBrush); 
 

// Do not call CDialog::OnPaint() for painting 
messages 

} 
where, as usual, the boxed material is new. 

 
The new code begins by creating a rectangle ball whose top left corner 

and bottom right corner are the point m_ptCenter. This gives a 1-pixel rectangle. 
We then use the InflateRect command to increase its size while keeping it 
centered on the original 1-pixel rectangle. This command takes two arguments, 
which specify the amount the rectangle is to be increased in size, horizontally 
first, then vertically. Since we want our rectangle to remain a square, we give the 
same values to both parameters. Finally we use the Ellipse command to create 
and draw the ball. Together this draws a ball centered at m_ptCenter.  

 
To move the ball around the screen, we need to do two things- change the 

values of the parameters m_ptCenter and m_iRadius, and tell Windows that we 
want to redraw the screen. Create a public method in CGraph called SetCenter. 
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It should take two integers as input and have no output. We want this function to 
use the two integers to determine the center of our ball, then tell windows that we 
want to redraw the screen. We can do this with the following code. 

 
void CGraph::SetCenter(int x, int y) 
{ 
 
 m_ptCenter.x = x; 
 m_ptCenter.y = y;  
 Invalidate(); 
 OnPaint(); 
 
} 

 
The first two commands set the position of the ball. The third tells Windows that, 
the next time the window is drawn, the entire window should be drawn. The last 
tells windows to actually draw the window. 
 

To see this in action, let us return to the original dialog box 
IDD_GRAPHICS_DIALOG. Remove the TODO text and the cancel button, and 
change the caption for the OK button to read Exit Program. Then add a new 
button called Animate whose ID is ID_BUTTON_ANIMATE. At this point we 
should have a main dialog box like the one in figure 2. 

 

 
Figure 2: The main dialog box 

 
Create the method OnButtonAnimate() to be executed when the Animate 
button is pressed. Modify that function so that it reads as follows. 
 

void CGraphicsDlg::OnButtonAnimate()  
{ 

// TODO: Add your control notification handler code 
here 

  
 for(int j=1000; j>=0; j--) 
  m_dlgGraph.SetCenter(j/10,j/10); 
 for(j=0; j<=1000; j++) 
  m_dlgGraph.SetCenter(j/10,j/10); 
 
} 

 
 Compile and run this code. Every time the Animate button is pressed, the 
ball will move to the top left corner of the window, and then back to its starting 
point. 
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Section 6: Getting Information about the Window 
 

At this point, we can use these techniques to move a ball around the 
screen. However, though we have to specify the screen coordinates for our 
drawing, we do not know basic information about the window in which we are 
drawing. For example, we know neither how tall nor how wide our window is. We 
would like to record this information in a variable of type CRect. Add a private 
variable of type CRect called m_rectView to CGraph. 

 
We would like to store information about our window in m_rectView as 

soon as the dialog is initialized. We could try to do this in the constructor. 
However, the constructor function is called before the window is created. 
(Remember how we declared the variable first, and then showed the window 
later?) Instead we need to do this in OnInitDialog().  

 
Examining the CGraph class, we note that there is no OnInitDialog() 

method. Actually, this is untrue because it inherits this method from its base class 
(CDialog). We can override this by adding a handler to the Windows Message 
WM_INITDIALOG. This handler is OnInitDialog() and we can modify it to read as 
follows 

 
BOOL CGraph::OnInitDialog()  
{ 
 CDialog::OnInitDialog(); 
  
 // TODO: Add extra initialization here 
 
 GetClientRect(m_rectView); 

 
return TRUE;  // return TRUE unless you set the focus   

to a control 
 // EXCEPTION: OCX Property Pages should return FALSE 
} 

 
The new code, GetCLientRect(m_rectView), stores the information 

about the dialog box in the variable m_rectView. Thus, to get information about 
our dialog box, we can simply access m_rectView. For instance, we can use any 
of the following 

• m_rectView.left 
• m_rectView.right 
• m_rectView.bottom 
• m_rectView.top 
• m_rectView.Width() 
• m_rectView.Height() 
• m_rectView.CenterPoint() 

The first six of these are integers; the last returns a CPoint. 
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Section 7: Graphs 
 

When we want to draw a graph to the screen, we are usually know the 
coordinates of the points in some coordinate system, and would like the 
computer to produce a faithful representation on the screen. Thus, we need a 
method that takes as input the ( ),x y  coordinates of a point, and in turn draws on 

the screen at the corresponding point. For our example, we want the box 
1 , 1x y− ≤ ≤  to fit on the visible screen as well as possible. 

 
To do so, first we need to determine which is larger- the window’s height 

or its width, and then to keep track of that result. In CGraph, declare a private 
variable of type integer called m_iScale. This will hold the distance from the 
center of our window to the nearest boundary. We also need to determine the 
center of the dialog; we add a variable of type CPoint, called 
m_ptWindowCenter. To initialize these values, modify OnInitDialog() as 
follows. 

 
BOOL CGraph::OnInitDialog()  
{ 
 CDialog::OnInitDialog(); 
  
 // TODO: Add extra initialization here 
 
 GetClientRect(m_rectView); 
 m_iScale = min(m_rectView.Width(), 

 m_rectView.Height())/2; 
 m_ptWindowCenter = m_rectView.CenterPoint(); 
  

return TRUE;  // return TRUE unless you set the focus 
to a control 

// EXCEPTION: OCX Property Pages should 
return FALSE 

} 
  

Note the need to divide by 2 in the calculation for m_iScale. (Why?) 
  
 Now suppose that we are given a pair of numbers x  and y . We need to 

find the corresponding screen coordinates ( ),xsc ysc for that point. If 0x = , then 

Center.xm_ptWindow=xsc . 
On the other hand, if 1x = , then  

m_iScaleCenter.xm_ptWindow +=xsc . 
We can then find the line through the points (0,m_ptWindowCenter.x) and 
(1,m_ptWindowCenter.x+m_iScale). It has equation 

( )1 0
0 0

1 0

xsc xscxsc xsc x x
x x
−

− = −
−

,  

which, upon substitution, can be simplified to  
xxsc ⋅+= m_iScaleCenter.xm_ptWindow . 
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 Similarly, if 0y = , then  

Center.ym_ptWindow=ysc . 
If 1y = , then 

m_iScaleCenter.ym_ptWindow −=ysc . 
Note the negative sign! We need the negative sign to account for the fact that, in 
mathematics the positive y-direction points up, while in Windows, the positive y-
direction points downward. We can then find the line through the points  
(0,m_ptWindowCenter.y) and (1,m_ptWindowCenter.y-m_iScale). It has the  
equation 

( )1 0
0 0

1 0

ysc yscysc ysc y y
y y
−

− = −
−

, 

which, after substitution, can be simplified to  
yysc ⋅−= m_iScaleCenter.ym_ptWindow . 

 
 With this background, we can now create a method that takes as input the 
( )yx,  coordinates of a point, then determines the corresponding screen 
coordinates for that point, and sets the center of our ellipse at that point. To do 
so, create a public method Draw in CGraph with the following code: 
 

void CGraph::Draw(double x, double y) 
{ 
 
 m_ptCenter.x = m_ptWindowCenter.x      

     +(int)((double)(scale)*x); 
 m_ptCenter.y = m_ptWindowCenter.y      

     -(int)((double)(scale)*y); 
 
 Invalidate(); 
 OnPaint(); 
} 

 
Note how we were very careful to explicitly cast our variable types. It is easy to 
make a very hard to find mistake when you rely on the compiler to cast your 
variables for you; sometimes it makes decisions that you do not expect. 
 

Section 8: Circular Motion 
 
Our original goal for this project was to create a program that moves a ball 

in a circle when a button is pressed. We shall replace the code for our Animate 
button with code that moves the ball in a circle. 

 
We begin by initializing the position of the ball. At start, we shall draw the 

ball at the position 1=x , 0=y . We can do so by calling the Draw function for 
m_dlgGraph in the OnInitDialog() method for CGraphicsDlg. Thus, it now reads 
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BOOL CGraphicsDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 
 // Set the icon for this dialog.  The framework does  

   this automatically 
 //  when the application's main window is not a  

   dialog 
 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 
 m_dlgGraph.Create(IDD_GRAPH); 
 m_dlgGraph.ShowWindow(SW_SHOW); 
 m_dlgGraph.Draw(1,0); 
  
 return TRUE;  // return TRUE  unless you set the  

     focus to a control 
} 

 
 Next, we modify the code for the Animate button so that it draws our ball 
in a circle of radius 1, starting at ( )0,1  and moving counterclockwise. We can do 
this by setting tx cos=  and ty sin=  for π≤≤ 20 t . To implement this in the code, 
we first make sure that we load the math.h header file, and then use the 
following code. 

  
void CGraphicsDlg::OnButtonAnimate()  
{ 
 // TODO: Add your control notification handler code  

  here 
  
// for(int j=1000; j>=0; j--) 
//  m_dlgGraph.SetCenter(j/10,j/10); 
// for(j=0; j<=1000; j++) 
//  m_dlgGraph.SetCenter(j/10,j/10); 
 
 const double pi = 4.0*atan(1.0); 
 const int n = 10000; 
 double x,y; 
 for(int i=0; i<n; i++) 
 { 
  x = cos( 2.0 * (double)(i)/(double)(n) * pi); 
  y = sin( 2.0 * (double)(i)/(double)(n) * pi); 
  m_dlgGraph.Draw(x,y); 
 } 
 
} 

 
One thing to note about this new code, is that it does not depend on the 

precise size of the drawing window. In particular, it only passes the ( )yx,  
coordinates of the point where the ball is to be drawn. The process of converting 
that information into screen coordinates is handled by the CGraph class. This 
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illustrates one of the great advantages of object-oriented programming- the 
separation of tasks by class. The class that decided where the ball is to be drawn 
does not need to know any information about the window where it is being 
drawn, as that entire process is handled internally by CGraph. 

Section 9: Lines 
 
Suppose we wanted to also draw the line from the center of the window to 

the moving ball. How can we do this? The shape, color, and style of lines and 
curves are governed by the currently selected CPen. The currently selected CPen 
also determines the style and color of the boundary of solid regions. You may 
have noticed that the balls that we have drawn all have had a thin black boundary 
around them; this is determined by the currently selected CPen. 

 
To draw a line, we need to create a CPen. A CPen is the equivalent of 

CBrush, however where CBrush is used for solid regions, CPen is used for lines 
and curves. To use a CPen, consider the following code fragment. 

  
 CPen Pen; 
 Pen.Create(PS_SOLID,1,RGB(0,0,255)); 

 
The first of these commands created a CPen called Pen; the second initializes it. 
The first parameter tells the type of curve to be drawn. Some of the options here 
include 

• PS_SOLID   Creates a solid pen. 
• PS_DASH   Creates a dashed pen. Valid only when the pen width is 1 or 
less, in device units. 
• PS_DOT   Creates a dotted pen. Valid only when the pen width is 1 or 
less, in device units. 
• PS_DASHDOT   Creates a pen with alternating dashes and dots. Valid 
only when the pen width is 1 or less, in device units. 
• PS_DASHDOTDOT   Creates a pen with alternating dashes and double 
dots. Valid only when the pen width is 1 or less, in device units. 

The second number is an integer which specifies the width of the Pen. The last is 
a color specification. 

 
 Like the CBrush, our CDC class can only hold one CPen at a time. Further, 
we must be sure to hold the pointer to the existing CPen so that we can re-select 
that CPen when our code completes. Here is an example of how we could use the 
CPen to select a Pen for drawing. 

   
void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
 // TODO: Add your message handler code here 
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 CPen *OldPen; 
 CPen Pen; 
 Pen.CreatePen(PS_SOLID,1,RGB(255,0,0)); 
 lOldPen = dc.SelectObject(&Pen); 
  
 // Do our Drawing 
  
 dc.SelectObject(OldPen); 
} 

 
Note that the SelectObject method of CDC takes the pointer to the Pen as the 
parameter, not the Pen itself. 
 
 There are two commands we must learn to draw lines. The first is the 
command MoveTo; the second is the command LineTo. These are both methods 
in the CDC class, and are inherited by the CPaintDC class of our OnPaint() 
method. To see these in action, consider the following code fragment. 
 

void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
 // TODO: Add your message handler code here 
 
 CPen *lOldPen; 
 CPen Pen; 
 Pen.CreatePen(PS_SOLID,1,RGB(255,0,0)); 
 lOldPen = dc.SelectObject(&Pen); 
 
 dc.MoveTo(0,100); 
 dc.LineTo(100,100);    
 
 dc.SelectObject(lOldPen); 
} 

 
This fragment begins by loading a 1 unit thickness red pen. The 

MoveTo(0,100) command moves the drawing position to the point with 
coordinates (0,100), while the LineTo(100,100) draws a line using the current 
CPen from there to the point (100,100). The MoveTo and LineTo command both 
will also take a CPoint as an argument instead of a pair of integers. 

 
There are other commands that can be used to draw lines and curves, 

including Arc, and PolyLine. For a complete listing of the available commands, 
examine MSDN. 

 

Section 10: InvalidateRect() 
 
Thus far, we have used the Invalidate() command to indicate to 

Windows that we want the entire viewing window redrawn the next time an 
WM_PAINT message is issued.  However, this is inefficient if only a portion of the 
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screen actually needs to be redrawn. We can exert a greater degree of control 
using the InvalidateRect command. 

 
The InvalidateRect command takes a CRect as a parameter. It tells 

Windows that the next time a WM_PAINT message is issued, to redraw the portion 
of the screen indicated by the CRect. Multiple InvalidateRect commands can 
be issued before a WM_PAINT message; Windows will then redraw the portion of 
the screen corresponding to each rectangle. 

 
Consider the following code fragment. 
 

void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
 // TODO: Add your message handler code here 
  
 CRect ball(m_ptCenter,m_ptCenter); 
 ball.InflateRect(m_iRadius,m_iRadius); 
 dc.Ellipse(ball);   
} 
 
void CGraph::Draw(int x, int y) 
{ 
 CRect ball1(m_ptCenter,m_ptCenter); 
 ball1.InflateRect(m_iRadius,m_iRadius); 
 
 m_ptCenter.x = x; 
 m_ptCenter.y = y; 
 
 CRect ball2(m_ptCenter,m_ptCenter); 
 ball2.InflateRect(m_iRadius,m_iRadius); 
 
 InvalidateRect(ball1); 
 InvalidateRect(ball2); 
 
 OnPaint(); 
} 

  
We see that this OnPaint method draws an ellipse at the point 

m_ptCenter of radius m_iRadius. Our Draw method is used to update the 
position of the ball so that we can animate its motion. The CRect ball1 is the 
existing position of the ellipse, while the CRect ball2 is the position of the 
ellipse when it is redrawn. As no other portion of the screen needs to be modified, 
we issue the two InvalidateRect command indicated so that only the portion 
of the screen that is actually being modified will be redrawn. 

 

Assignments 
1. What do we mean when we say that CGraph is derived from CDialog? 
2. Experiment with different sizes of ellipses and different colors. 
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3. What happens if the Invalidate() command is omitted in our 
SetCenter method? Explain. 

4. What happens if the OnPaint() command is omitted in our 
SetCenter method? 

6. Add a button to the program that moves the ball clockwise. 
7. Modify the code so that it draws a line from the center of the screen to 

the ball. 
8. What would happen if in the code fragment for InvalidateRect, we 

removed the InvalidateRect(ball1) command? What would happen if we 
removed the InvalidateRect(ball2) command? 
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Project: The Three Body Problem 
 
 

Section 1: Introduction 
 
 In this project, we will model the behavior of three bodies- say planets or 
stars, that move solely due to their mutual gravitational attraction. For simplicity, 
we will assume that the bodies are constrained to lie in a single plane. 
 
 The problem with just two bodies has been solved analytically; however, 
there is no analytic solution to the general three-body problem. 
 
 In the project, the student will create a computer program that will 
simulate the motion of three bodies under gravity, then study the resulting 
behavior. 
 

Section 2: The Model 
 
 The key to our model is Newton’s Law of Gravitation. It says that the 
gravitational attraction between two bodies of masses 1m  and 2m  located a 

distance r  apart is 

1 2
2

m mF G
r

=  

where 11 2 26.67 10 N m / kgG −= × ⋅  is the universal constant of gravitation. 
 
 To construct our model, let us suppose that we have three planets of 
masses 1m , 2m  and 3m  respectively. Since we are assuming that these planets 

move in a plane, we can specify their positions as 1
1

1

x
r

y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

r
, 2

2
2

x
r

y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

r
, and 

3
3

3

x
r

y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

r
.  

 
We begin by finding the gravitational force that planet 2 exerts on planet 1. 

The distance between planet 1 and planet 2 is  

( ) ( )2 21 2
1 2 1 2 1 2

1 2

x x
r r x x y y

y y
⎛ ⎞ ⎛ ⎞

− = − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r
 

so that the size of the force acting on planet 1 caused by planet 2 is 

( ) ( )
1 2 1 2

12 2 2 2
1 2 1 21 2

m m m mF G G
x x y yr r

= =
− + −−

r r . 
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This force acts to pull planet 1 toward planet 2. A vector from planet 1 to planet 2 
is 1 2r r−r r

, so that a vector of length 1 from planet 1 towards planet 2 is 

1 2

1 2

r r
r r
−
−

r r

r r . 

This then tells us that the force exerted by planet 2 on planet 1 is the vector 

( ) ( )
1 21 2 1 2 1 2

12 2 3/ 22 2
1 21 21 2 1 2 1 2

x xm m r r m mF G G
y yr rr r x x y y

−⎛ ⎞−
= = ⎜ ⎟−−− ⎡ ⎤ ⎝ ⎠− + −⎣ ⎦

r rr
r rr r . 

Similarly, the force exerted by planet 3 on planet 1 is the vector 

( ) ( )
1 31 3 1 3 1 3

13 2 3/ 22 2
1 31 31 3 1 3 1 3

x xm m r r m mF G G
y yr rr r x x y y

−⎛ ⎞−
= = ⎜ ⎟−−− ⎡ ⎤ ⎝ ⎠− + −⎣ ⎦

r rr
r rr r . 

Thus the total force acting on planet 1 is just  

( ) ( ) ( ) ( )

1 31 2
12 13 1 2 33 3

1 2 1 3

1 31 2 32
1 3/ 2 3/ 22 2 2 2

1 2 1 3
1 2 1 2 1 3 1 3

r rr rF F Gm m m
r r r r

x xx x mmGm
y y y yx x y y x x y y

⎧ ⎫−−⎪ ⎪+ = +⎨ ⎬
− −⎪ ⎪⎩ ⎭

⎧ ⎫
−− ⎛ ⎞⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟⎜ ⎟− −⎡ ⎤ ⎡ ⎤⎝ ⎠ ⎝ ⎠⎪ ⎪− + − − + −⎣ ⎦ ⎣ ⎦⎩ ⎭

r rr rr r
r r r r

 

 
Now Newton’s Law says that amF rv

= ; since ra ′′= v
r

, this tells us 

that F mr′′=
r r

 and thus the motion of planet 1 is governed by the equation 

1 31 2
1 2 33 3

1 2 1 3

r rr rr G m m
r r r r

⎧ ⎫−−⎪ ⎪′′ = +⎨ ⎬
− −⎪ ⎪⎩ ⎭

r rr r
r

r r r r  

or equivalently 

( ) ( ) ( ) ( )
1 31 1 2 32

3/ 2 3/ 22 2 2 2
1 1 2 1 3

1 2 1 2 1 3 1 3

x xx x x mmG
y y y y yx x y y x x y y
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. 

 
 We can proceed similarly to find the equations for planet 2 and planet 3; 
they are  

2 32 1
2 1 33 3

2 1 2 3

r rr rr G m m
r r r r

⎧ ⎫−−⎪ ⎪′′ = +⎨ ⎬
− −⎪ ⎪⎩ ⎭

r rr r
r

r r r r  

and 

3 1 3 2
3 1 23 3

3 1 3 2

r r r rr G m m
r r r r

⎧ ⎫− −⎪ ⎪′′ = +⎨ ⎬
− −⎪ ⎪⎩ ⎭

r r r r
r

r r r r . 

Combining these, we obtain the following second-order system of differential 
equations 
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which can be written in terms of the functions ix  and iy  as 
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Because this is a second order system, we must convert it to a first order system 

before we can use the numerical techniques that we have learned. Let 1 1u x ′=  be 

the x-component of the velocity of planet 1, and let 1 1v y ′=  be the y-component of 

the velocity of planet 1; in fact, let i iu x ′=  be the x-component of the velocity of 

planet i , and let i iv y ′=  be the y-component of the velocity of planet i  where i  

can be either 1, 2, or 3. 
 
We then obtain the following system of ordinary differential equations 
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To this system we must add initial conditions. In particular, we need to specify 
each of the twelve variables ix , iy , iu  and iv  for 1,2,3i =  at time 0t = . Physically, 

this requires us to know the positions and velocities for each of the three bodies 
when the simulation starts. 
 

Project: 
 

Write a C++ program that simulates the motion of three bodies under the 
influence of gravity. 
 

As input, the program should take 
• The initial positions and velocities of all of the bodies, 
• The masses of all of the bodies, 
• The gravitational constant of the universe, 
• The time that the simulation should run, and 
• The step size used in the simulation. 
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As output, the program should return 
• A graphical representation of the motion of the bodies and 
• The final positions and velocities of all of the bodies. 

 
The program should be written using good object oriented programming 
techniques. 
 
You are then to write up a technical report that answers the following questions: 

1. What is the mathematical model of the problem? 
2. What is the numerical method used to solve the problem? 
3. What is the structure of your program? 
4. Describe the range of possible behaviors shown by the system. 

 
In particular, for question 4, consider the following questions: 
Is it possible for the system to eject one of the bodies to infinity? 
Is it possible for the system to return to its initial state? 
Is it possible for the system to return to a state close to, but not the same as, its 
initial state? 
 
When answering these questions, you must address the question of how the 
choice of step size affects the result. 
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Project: The Double Spring 
 
 

Section 1: Introduction 
 
 Suppose that we have two springs attached to a mass at one end, with the 
other ends fixed at the points )0,1(−  and )0,1( . 
 

If we let go of the mass, it will be pushed and pulled around the plane by the 
springs. Our question is to determine the resulting motion of the mass. 
 

Section 2: The Model 
 
 We begin by modeling a simple spring with one fixed end. Hooke’s Law 
says that if the free end of a spring is stretched a distance d  from its equilibrium 
position, then the spring exerts a force F kd= −  where k  is a positive constant, 
called the spring constant. Equivalently, if x  is the total distance the spring is 
stretched, then ( )F k x L= − −  where L  is the equilibrium length of the spring.  
 

Equilibrium position 
x L=  

0F =  

 
Stretched 

x L>  
0F <  

Compressed 
Lx <  
0>F  

w 

Figure 1: The double spring system 

),( yx

)0,1(− )0,1(
Figure 2: Illustration of Hooke’s La
97
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If x L< , then the spring is compressed, and the free end is closer to the 
fixed point than its equilibrium position. In this case 0F >  and the spring pushes 
the free end back towards  equilibrium. On the other hand, if x L> , then the 
spring has been stretched, the free end is pulled back toward equilibrium,  and 

0F < . 
 
In the double spring system, let the moving object have mass m , and 

assume that the two springs are identical with spring constant k  and equilibrium 
length L . To determine the motion of our object, we need to find the total force 
acting on it. 

 
We begin by calculating the forces exerted by each spring. Let the vector 

from )0,1(−  to ),( yx  be called 1vr ; then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

y
x

v
1

1
r

 and 1vr  has length 

22
1 )1( yxv ++=
r

. Thus the force exerted by that spring is ( )2 2( 1)k x y L− + + − . 

This force acts in the direction of 1vr ; a vector of unit length in the same direction 

as 1vr  is  

( )
1

2 21

11

1

xv
yv x y

+⎛ ⎞
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⎝ ⎠+ +

r

r . 

Thus the total force acting on our moving mass from the spring attached to 
( )1,0−  is 

( )1,0 2 2

1
1

( 1)

xLF k
yx y

−

⎛ ⎞ +⎛ ⎞
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r
. 

A similar argument tells us that the force acting on our moving mass from the 
spring attached to ( )1,0  is 

( )1,0 2 2

1
1
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xLF k
yx y

⎛ ⎞ −⎛ ⎞
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. 

 
 Our model of the double spring system is then 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

++
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′′
′′

y
x

yx
L

y
x

yx
L

m
k

y
x 1

1
)1(

1
1

)1( 2222
. 

Because this is a second-order system, to solve it numerically we need to convert 
it to a first-order system. To do so, introduce the new variables u x′=  and v y′= . 
This gives us the system 
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To this system, we must add appropriate initial conditions, namely the position 
and velocity of the mass at time 0t = . 
 

Project: 
Write a C++ program that simulates the motion of a double spring system. 

 
As input, the program should take 
• The initial position of the mass, 
• The initial velocity of the mass, 
• The spring constant of the two springs (assumed to be identical), 
• The natural length of the two springs (assumed to be identical), 
• The mass, 
• The time that the simulation should run, and 
• The step size used in the simulation. 

 
As output, the program should return 

• A graphical representation of the motion of the system and 
• The final positions and velocities of the mass. 

 
The program should be written using good object oriented programming 

techniques. 
 

You are then to write up a technical report that answers the following 
questions: 

1. If x0=0.524, y0=0.546, u0=-0.036, v0=-0.841, m=1.0, L=0.5, and k=50.0, 
what is the position of the mass at t=5.0? Is the final value of y positive or 
negative? How accurate is your answer? 

2. Are there initial conditions for which the solution remains above the x-axis 
for all time? 

3. The differential equation  

( )
( )0 0

,y f t y

y t y

′ =⎧⎪
⎨

=⎪⎩
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displays sensitive dependence on initial conditions at ( )0 0,t y  if small 

changes in either 0t  or 0y  can produce significant changes in the solution. 

Does the system display sensitive dependence on initial conditions? If so, 
does this always happen, or is it true only for some data? 

4. Suppose you apply a force ( )F x  on an object at position x . The work 

done in moving the object from x a=  to x b=  is defined to be 

( )
b

a
W F x dx= ∫ . 

What is the work done by a one-dimensional spring to move an object 
from equilibrium to the point x ? 

5. Consider 

( ) ( )( ) ( ) ( )2 22 2 2 2 2 21 1
2 2 ( 1) ( 1)E m x y k x y L x y L⎡ ⎤′ ′= + − + + − + − + −⎢ ⎥⎣ ⎦

. 

Show that this quantity is conserved. What is its significance?  
Hints:  
• By conserved, we mean that E  is constant for all time. We can show 
this by proving 0E′ = . 
• For the significance, consider #4, and recall that the kinetic energy of a 
body of mass m  and moving with velocity v  is 21

2 mv . 
 
When answering these questions, you must address the question of how the 

choice of step size affects the result. 
 



 

Sliders and Scrolling 
 

Section 1: Introduction 
 

Many programs use scroll bars to control various program functions. We 
shall learn how to integrate scroll bars into our code. As a demonstration, we 
shall write a short program that uses scroll bars to adjust the size and position of 
an ellipse drawn on the screen. 

 

Section 2: The Skeleton 
 
 We shall begin by creating a simple dialog-based program called 
Scrolling with no About Box. In the main dialog, we shall remove the Cancel 
button and rename the OK button to Exit Program. From the Controls toolbar, 
we then select Slider. 

 
We add four sliders. 
on the screen, and tw
to leave two of the sli
like two of them to be
slider by selecting it, 
controlled by the Ori

Slider 
Figure 1: The slider entry in the Controls toolbar 
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Two of these will be for adjusting the position of our ellipse 
o will be used to adjust its height and width. We would like 
ders in their default, horizontal orientation, but we would 
 oriented vertically. We can change the orientation of a 
right-clicking to get its properties menu. Its orientation is 
entation control in the Styles tab.  Note that when the  

 
Figure 2: The Slider Properties menu 
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slider orientation is changed, the actual size of the slider in the dialog box is left 
unchanged. We need to resize the slider so that it can be seen. At this point, we 
can also add tick marks and/or a border to our slider if we desire. We add 
appropriate ID’s for each of our slider bars and each of our edit boxes. We call 
then IDD_SLIDER_VPOS, IDD_EDIT_VPOS, IDD_SLIDER_HPOS, 
IDD_EDIT_HPOS and so on. Finally, we add four edit boxes, one for each of our 
sliders. At this point, our dialog box should look something like Figure 3. 
 

 
Figure 3: The controls 

Section 3: The Class CEllipse 
 
 Because we want to use our controls to adjust the position and size of an 
ellipse, we create a second dialog box and a class for it, called CEllipse. This 
class has four private variables, 

• m_ptWindowCenter  
• m_ptEllipseCenter 

of type CPoint, and 
• m_cxWidth 
• m_cyHeight 

which are both integers. The first of these is to hold the center point of the dialog 
window; the second is the center point of the ellipse, while the last two contain 
the width and height of the ellipse.  

Our OnPaint() method simply reads 
 
void CEllipse::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
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 // TODO: Add your message handler code here 
 
 CBrush* OldBrush; 
 CBrush YellowBrush; 
 YellowBrush.CreateSolidBrush(RGB(255,255,0)); 
 OldBrush = dc.SelectObject(&YellowBrush); 
 
 dc.Ellipse(m_ptEllipseCenter.x - m_cxWidth, 

m_ptEllipseCenter.y - m_cyHeight, 
  m_ptEllipseCenter.x + m_cxWidth,  

m_ptEllipseCenter.y + m_cyHeight); 
 
 dc.SelectObject(OldBrush); 
 
 // Do not call CDialog::OnPaint() for painting messages 
} 

Recall that we can edit the OnPaint() function by right-clicking on the 
CEllipse class, and choosing Add Windows Message Handler, then selecting 
WM_PAINT. 
 
 We need to initialize the variables in our program. Our first instinct might 
be to do this in the constructor, but this will not work. The reason for this is that 
we would like the m_ptWindowCenter to hold the actual center point of our 
window. However the class is created before it is assigned a window, thus this 
information is unknown at construct time. Instead, we would like to perform this 
initialization when the window is first created. We can do this by adding a 
handler to the window message WM_CREATE which is called when the window is 
created.  We then add the following code 
 

int CEllipse::OnCreate(LPCREATESTRUCT lpCreateStruct)  
{ 
 if (CDialog::OnCreate(lpCreateStruct) == -1) 
  return -1; 
  
 // TODO: Add your specialized creation code here 
 
 CRect CurrentRect; 
 GetClientRect(CurrentRect); 
 m_ptWindowCenter = CurrentRect.CenterPoint(); 
 m_ptEllipseCenter = m_ptWindowCenter; 
 m_cxWidth = CurrentRect.Width()/2; 
 m_cyHeight = CurrentRect.Height()/2; 
 
 return 0; 
} 

 
This gives us reasonable initial values for our parameters. 
 
 Finally, we need to create a public method to set the parameters for our 
ellipse; we use the following public function 
 

void CEllipse::SetData(int x, int y, int w, int h) 
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{ 
 m_cxWidth = w; 
 m_cyHeight = h; 
 m_ptEllipseCenter = CPoint(x,y) + m_ptWindowCenter; 
 Invalidate(); 
 
} 

 
Note that this function takes as input the offset from the center for our ellipse, 
rather than its absolute center.  
 

Finally, we return to the class CSrollingDlg  create a private variable of 
type CEllipse called m_dlgEllipse. In OnInitDialog() we add the code in 
the box below. 

 
BOOL CScrollingDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 
 // Set the icon for this dialog.  The framework does this 
automatically 
 //  when the application's main window is not a dialog 
 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 
 m_dlgEllipse.Create(IDD_ELLIPSE); 
 m_dlgEllipse.ShowWindow(SW_SHOW); 
  
 return TRUE;  // return TRUE  unless you set the focus to a 
control 
} 
 

At this point, when our program runs, we should be presented with a dialog box 
like Figure 3 and a dialog box like Figure 4. 
 

Section 4: Sliders 
 
 To use our slider bars, we need to associate them with a variable. This can 
be done in two different ways. We can associate an integer variable to a slider. 
The range for the integer variable is 0 to 100, and we read and set the value of the 
variable using UpdateData(). 
 

As the second option, we can also assign a control variable to a slider. In 
the class wizard, when associating the variable, change the Category from Value 
to Control. The variable type for a slider control is CSliderCtrl. We can set the 
range for the values for CSliderCtrl by using the SetRange() method, which 
takes integer values for the low and the high end of the range. We can set the 
value for the CSliderCtrl by using SetPos() method. There is no need to call 



 

UpdateData() when
CSLiderCtrl by usi
CSliderCtrl, see M

 
In this example

m_ctrlHPosSlider
m_ctrlVSizeSlide
m_iHPos, m_iHSize

 
We shall initial

CEllipseDlg. We add t
and scroll bars; we the
the class CEllipse to s

 
BOOL CScrolli
{ 
 CDialog
 
 // Set 
automatically
 //  whe
 SetIcon
 SetIcon
  
 // TODO
 
 m_dlgEl
 m_dlgEl
Figure 4: The result of our CEllipse class. 
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 using SetPos(). We determine the value for the 
ng the GetPos() method. For more information on 
DSN. 

, we shall use controls. We associate the variables 
, m_ctrlHSizeSlider, m_ctrlVPosSlider, and 
r to the appropriate sliders; we also associate the integers 
, m_iVPos and m_iVSize to the corresponding edit boxes. 

ize these values in the OnInitDialog() method of our class 
he following code to set default values for the edit boxes 
n call the SetData(int x, int y, int w, int h) function from 

ynchronize the data. 

ngDlg::OnInitDialog() 

::OnInitDialog(); 

the icon for this dialog.  The framework does this 
 
n the application's main window is not a dialog 
(m_hIcon, TRUE);   // Set big icon 
(m_hIcon, FALSE);  // Set small icon 

: Add extra initialization here 

lipse.Create(IDD_ELLIPSE); 
lipse.ShowWindow(SW_SHOW); 
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 m_ctrlHPosSlider.SetRange(-100,100,TRUE); 
 m_ctrlVPosSlider.SetRange(-100,100,TRUE); 
 

m_iHPos = 0; 
 m_iVPos = 0; 
 m_iHSize = 50; 
 m_iVSize = 50; 
 
 UpdateData(FALSE); 
 
 m_ctrlHPosSlider.SetPos(m_iHPos); 
 m_ctrlVPosSlider.SetPos(m_iVPos); 
 m_ctrlHSizeSlider.SetPos(m_iHSize); 
 m_ctrlVSizeSlider.SetPos(m_iVSize); 
 
 m_dlgEllipse.SetData(m_iHPos,m_iVPos,m_iHSize,m_iVSize); 
  
 return TRUE;  // return TRUE  unless you set the focus to a 
control 
} 

 
The new code is indicated in the box. The default range for the parameter in a 
slider is from 0 to 100. The first two commands change the range to –100 to 100. 
Note that the SetPos(int) functions do not requires an UpdateData(BOOL) 
command, but that the position of the slider bars is updated immediately. Notice 
also that the new code is placed after the code that generates the dialog box that 
shows the ellipse; this is so that the m_dlgEllipse.SetData command can be 
executed. 

Section 5: Scrolling 
 
 To use the scroll bars, we would like to update the size or position of the 
ellipse whenever the position of one of the slider bars is changed. Whenever the 
position of a slider control is changed, the program receives a windows message. 
For horizontal slider bars and scroll bars, it receives a WM_HSCROLL message, 
while for a vertical slider bar or scroll bar, it receives a WM_VSCROLL message.  
 
 The same message is sent regardless of the source of the scroll message ; 
however the message handler receives a pointer to the scroll bar which generated 
the message. Indeed, when the handler to a WM_HSCROLL message  is first 
added to the code, it has the form 

 
void CEllipse::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* 
pScrollBar)  
{ 
 // TODO: Add your message handler code here and/or call 
default 
  
 CDialog::OnHScroll(nSBCode, nPos, pScrollBar); 
} 
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The first parameter received describes the type of scrolling that generated the 
message. Allowable values for this parameter include 

• SB_LEFT    The user has scrolled to the far left. 
• SB_RIGHT  The user has scrolled to the far right. 
• SB_LINELEFT  The user has scrolled to the left. 
• SB_LINERIGHT  The user has scrolled to the right 
• SB_THUMBPOSITION The user has scrolled to an absolute position 

indicated by nPos. 
• SB_THUMBTRACK The user has dragged the scrollbar to the 

position indicated by nPos. 
The nPos parameter is only used by SB_THUMBPOSITION and SB_THUMBTACK. 
The last parameter is the pointer to the scroll bar that generated the message. 
The last parameter is a pointer to the CScrollBar that generated the message.  
 
 CScrollBar is a class that can be used to dynamically change the 
properties of a scroll bar. This class is derived from the more general CWnd class. 
It is used to tell us which scroll bar or slider bar generated the current scroll 
message. We can do this by using the GetDlgCtrlID() function which 
CScrollBar inherits from CWnd. This method will return the ID of the window. 
 
 We can now add the code to the OnHScroll method.  
 

void CScrollingDlg::OnHScroll(UINT nSBCode, UINT nPos, 
CScrollBar* pScrollBar)  
{ 
 // TODO: Add your message handler code here and/or call 
default 
 
 switch(pScrollBar->GetDlgCtrlID()) 
 { 
 case IDC_SLIDER_HPOS: 
  m_iHPos = m_ctrlHPosSlider.GetPos(); 
  UpdateData(FALSE); 
  m_dlgEllipse.SetData(m_iHPos,m_iVPos, 
 m_iHSize,m_iVSize); 
  break; 
 case IDC_SLIDER_HSIZE: 
  m_iHSize = m_ctrlHSizeSlider.GetPos(); 
  UpdateData(FALSE); 
  m_dlgEllipse.SetData(m_iHPos,m_iVPos, 
 m_iHSize,m_iVSize); 
  break; 
 } 
 
  
 CDialog::OnHScroll(nSBCode, nPos, pScrollBar); 
} 

 



 

The new material is boxed. We use the GetDlgCtrlID() function to determine 
the ID of the slider that generated the scroll message. We then store the position 
of the slider in the appropriate integer variable, and update the edit box. This way 
the value in the edit box will remain synchronized with the slider. We then call 
the SetData function from m_dlgEllipse to change the size and/or position of 
the ellipse. The last thing that is done is to call the OnHScroll method for the 
CDialog which handles all other scroll messages. 
 
 We also write a similar function for WM_VSCROLL. The primary difference 
is that the parameter nSBCode can take on different values: 

• SB_BOTTOM   The user has scrolled to the bottom. 
• SB_TOP   The user has scrolled to the top. 
• SB_LINEDOWN  The user has scrolled down one line 
• SB_LINEUP  The user has scrolled up one line 
• SB_THUMBPOSITION The user has scrolled to an absolute position 

indicated by nPos. 
• SB_THUMBTRACK The user has dragged the scrollbar to the 

position indicated by nPos. 
 

At this point, our code is nearly complete. All that remains for us to do is 
to update the appropriate slider and the ellipse whenever the value in the edit box 
is changed. Although there is a message that is sent whenever the value of an edit 
box changes, called EN_CHANGE, it is inappropriate for this purpose. This is 

S 
Figure 5: Adding the message map for EN_KILLFOCU
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because it will also check to see that the value in the box is an integer, and if the 
user deletes the current value before typing in a new value, the program will 
display an error dialog asking that an integer value be added to the edit box. 
Instead, we shall use the EN_KILLFOCUS message, which is sent when an edit 
box loses the input focus. This can occur whenever the user clicks on another 
portion of the program or another edit box. 
 
 To add this message handler, we start the Class Wizard (Ctrl+W), then 
select the Message Maps tab. Select the Object ID, and appropriate message, then 
choose Add Function. The Class Wizard provides a default name for the function.  
 

In our example, we shall use the same function OnKillFocusEdit for 
the EN_KILLFOCUS message for all of our edit boxes. We use the following code 
for this function. 
 

void CScrollingDlg::OnKillfocusEdit()  
{ 
 // TODO: Add your control notification handler code here 
  
 UpdateData(TRUE); 
  
 m_ctrlHPosSlider.SetPos(m_iHPos); 
 m_ctrlVPosSlider.SetPos(m_iVPos); 
 m_ctrlHSizeSlider.SetPos(m_iHSize); 
 m_ctrlVSizeSlider.SetPos(m_iVSize); 
 
 m_dlgEllipse.SetData(m_iHPos,m_iVPos,m_iHSize,m_iVSize); 
 
} 

Assignments: 
 
 1. What essential feature is missing in the OnKillFocusEdit() method 
described in the text?  

2. Write a program that draws a circle on the screen. Your program should 
have three slider bars that can be used to adjust the color of the resulting circle. 
The slider bars will control the amount of red, green, and blue that are used to 
color the circle. 
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Dynamic Memory Allocation and 
Graphs 

 

Section 1: Introduction 
 
 In C++, memory for data objects can be allocated and deallocated 
dynamically, i.e. during the execution time.  This feature is very desirable when 
we are dealing with the applications containing data structures whose size is not 
known during the compilation time.  Rather than statically reserving memory for 
the maximum possible size of the data structure, we can delay the memory 
allocation till run time during which we can obtain the size of the data structure 
dynamically. In this section we briefly describe the dynamic memory allocation 
and introduce the pointer data type that is used to point to a memory location. 

Section 2: Dynamic Memory Allocation 
 
 A variable of pointer data type contains an address of data object.  Though 
pointers are memory addresses, we have to define the type of data object to which 
a pointer variable points.  Following is the declaration of a pointer variable called 
intPtr that points to a single integer. 
 

 int* intPtr; 
 
C++ provides two operators for the allocation and deallocation of the memory.  
The new operator is used to allocate memory and returns its address; the delete 
operator deallocates the memory. The memory for the objects created 
dynamically is allocated on the heap and it will not deallocated automatically as 
object goes out of scope and ceases to exit.  It is the programmer’s responsibility 
to deallocate the memory to prevent memory leaks. 
 
 Dynamically creating a variable is a two-step process. First, you declare a 
pointer to the type of variable; then you use the new function to allocate the 
memory. Consider the following code fragment: 
 

int n;    
n=10;    
double* x;   // This creates the pointer 
x = new double[n]  // This creates an array of size n 

 
Dynamic memory allocation can be used in other contexts; the following code 
fragment dynamically creates a single integer, and gives it the value 5. 
 

int* n; 
n = new int (5); 
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The process of dynamically creating a variable can be shortened to one line. 
Consider the following: 
 

int* n = new int (5); 
 
This is equivalent to the two-line construction above. Note however, that this line 
cannot be placed in a header file. 
 
 Variables created dynamically exist independently of the scope in which 
they were created. In particular, these variables exist until they are destroyed 
manually. This is done using the delete operator. To delete an array, use 
delete[]; otherwise use delete.  Consider the following code fragment: 
 

double* x;    
x = new double[10]   
int* n = new int (5); 
 
delete[] x; 
delete n; 

 
Recall that when an instance of a class goes out of scope, its destructor is called. 
This is an excellent place to put any needed delete operations. 

Section 3: Graphs 
 
 Often in mathematics and modeling it is useful to see the graph of a 
function. In this section we shall write a short program that displays the graph of 
the function ( ) ( )cosf t A t= ω + φ  where the values of A , ω , and φ  will be entered 

by  the user. The user will also enter the range of t  values for which the graph will 
be shown. This is a simple example that requires dynamic allocation of memory, 
as the number of points is an input variable. Moreover, we show how to use the 
PolyLine method defined in CDC class. The PolyLine method takes an array of 
points and the number of points and draws a series of line segments by 
connecting all the points in the array.   
 
 The program for this example contains three main components:  

1. A user interface that allows the user to input the data. 
2. An output window that displays the graph for the function. 
3. A processing engine that, based on the number of input points and the 

size of the output window (both obtained dynamically), calculates the 
points for the given function and invokes the OnPaint function of the 
output window to be drawn.   

Due to the simplicity of the graph, we have not used a separate class to calculate 
the points; rather we have included it in the message handler of the Graph 
button, on the user interface window. 
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User Interface 
 Create a dialog-based project and call it Dynamic. Next, insert a dialog 
box. In case you forgot how to do it, click on the ResourceView tab in the 
workspace pane, right click on Dialog option and select Insert.   Remove the 
“TODO” text and the Cancel button.  Right click on the OK button and select 
Properties option to change the caption of OK  button to Exit Program.  Next add 
5 edit box controls, corresponding to A, ω , φ , number of points and end time.  
  
 Set the ID property of edit box controls to: IDC_A , IDC_OMEGA , 
IDC_PHI, IDC_N and IDC_ENDTIME. Add 5 Static Text controls and change their 
Captions as to End Time, A, Phi, Omega and Number of Points. Next add one 
Command Button Control and change its ID and caption to 
IDC_BUTTON_GRAPH and Graph.  Figure 1, depicts the dialog box with all the 
controls.  

 

 
Figure 1: Our main dialog box 

 
 Now we need to attach variable names and functionality to these controls 
before we can use them in our application.  Invoke the ClassWizard by entering 
CTRL+W, click on the Member Variables tab, select a Control Id from the list of 
Control IDs and click on the Add Variable option.  Attach a variable name and a 
data type to each control ID.  The variable names and types for the Edit controls 
are shown in Figure 2.  To initialize these variables, click on the constructor 
function for the CDynamicDlg class, and modify the initial values to those shown 
below: 

 
CDynamicDlg::CDynamicDlg(CWnd* pParent /*=NULL*/) 
 : CDialog(CDynamicDlg::IDD, pParent) 
{ 
 //{{AFX_DATA_INIT(CDynamicDlg) 
 m_dA = 1; 
 m_dET =10; 
 m_dN = 100; 
 m_dO = 1; 
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 m_dP = 0.0; 
  
 //}}AFX_DATA_INIT 
 // Note that LoadIcon does not require a subsequent 
 // DestroyIcon in Win32 
 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 
} 

 
Next, we want to insert the second dialog box into the project and change its 
caption to Graph and its ID to IDD_GRAPH.  Remove the “TODO” text, Cancel 
button and OK button.  This dialog will be used to display the graph for our 
function.   Create a class for this dialog and call it CGraph. Use the ClassWizard 
and add the following private member variables: 
 

int m_iN;   //Number of points 
CRect m_rectWin;  //width of the graph window 
CPoint * m_ptPoints; //pointer to the array of points to be  
    //plotted 
bool m_bInit;   //a flag indicating whether memory for  
    //the array of points have been   
    //allocated.   

 
In the constructor function, we set the initial value of m_bInit flag to false and 
m_ptPoints to NULL. 

Figure 2: Variable names 
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CGraph::CGraph(CWnd* pParent /*=NULL*/) 
 : CDialog(CGraph::IDD, pParent) 
{ 
 //{{AFX_DATA_INIT(CGraph) 
  // NOTE: the ClassWizard will add member 
  // initialization here 
 //}}AFX_DATA_INIT 
 m_bInit = false; 
 m_ptPoints = NULL; 
} 

 
 Since we are dealing with dynamic memory allocation, we need to add a 
destructor function to deallocate the memory when the object goes out of scope.  
Below is the destructor function. 
 

CGraph::~CGraph() 
{ 
 if (m_bInit) 
  delete [] m_ptPoints; 
} 

 
 We add the following public function that calculates the coordinates of the 
points to be plotted.  This function is called when the Graph button on the Input 
dialog is selected.  Since during the execution of the program, we may draw more 
than one graph by changing the input parameters, the first thing this function 
does, deallocates the memory dynamically created for the array of points, if 
exists.  Next, creates the array of points for the given number of points and after 
setting the flag to true it calculates the x and y coordinates for the points to be 
plotted, using the dimensions of the current Graph window. 
 

void CGraph::CreateGraph(double *x, double *y, int N, double T) 
{ 
 if (m_bInit) 
  delete [] m_ptPoints; 
 
 m_ptPoints = new CPoint[N]; 
 m_bInit = true; 
 m_iN = N; 
  
 for (int i =0 ; i <N; i++) 
 { 
  m_ptPoints[i].x=  (int)(x[i]* m_rectWin.Width()/ T); 
  m_ptPoints[i].y = (int)((double)(m_rectWin.Height()) 
     * (y[i]-1)/(-2*1)); 
 } 
 
 Invalidate(); 
 OnPaint(); 
} 
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 Next, to get the current widow size and plot the graph we need to add and 
edit the message handlers associated with WM_INITDIALOG and WM_PAINT 
messages.  To do this, right click on the CGraph class name in Class View pane 
and select Add Windows Message Handler option. Then select WM_INITDIALOG 
from the New Windows Messages/Events pane and click Add and Edit button on 
the right.   

 
Figure 3: Windows Event & Message Handlers 

 
First we modify the OnInitDialog message handler.  In order to get the width 
and height of the Graph window in the above for loop, we need to call the 
GetClientRect function to initialize these properties. Click on the 
OnInitDialog function name in the ClassView tab and add the code shown in 
the box to this function. 
 

BOOL CGraph::OnInitDialog()  
{ 
 CDialog::OnInitDialog(); 
  
 // TODO: Add extra initialization here 
 GetClientRect(m_rectWin);  
 return TRUE;  // return TRUE unless you set the focus to a 
     // control 
               // EXCEPTION: OCX Property Pages should 
     // return FALSE 
} 
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 Next we make the modifications to OnPaint message handler.  If we do 
have a set of points to plot, we call PolyLine, which uses the current pen, to 
draw the graph. 
  

void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
  
 // TODO: Add your message handler code here 
 if (m_bInit) 
  dc.Polyline(m_ptPoints,m_iN); 
 // Do not call CDialog::OnPaint() for painting messages 
} 

 
 So far, we have explained how these dialog boxes are created and operate.   
In order to connect the connect them together, we add a variable of type CGraph, 
called m_dlgGraph to the CDynamicDlg class and invoke Create and 
ShowWindow to display the Input Dialog. The OnButtonGraph is called to 
display the graph for the initial values provided by the programmer.  If you wish 
to initialize all values to zeroes, you can remove the OnButtonGraph call.  Or 
you may leave the initial values and click the Graph button to draw the graph 
when the program is executed. Modify the OnInitDialog function of 
CDynamic class by adding the code segments shown below.    
 

BOOL CDynamicDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 
 // Set the icon for this dialog.  The framework does this 
automatically 
 //  when the application's main window is not a dialog 
 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 m_dlgGraph.Create(IDD_GRAPH); 
 m_dlgGraph.ShowWindow(SW_SHOW); 
 OnButtonGraph();   // remove if you do not provide 
              // initial data. 
 return TRUE;  // return TRUE  unless you set the focus to a 
     // control 
}  

 
 Below is the message handler for the Graph button on the Input dialog 
box. The OnButtonGraph function gets the input data, evaluates the function 

( ) ( )cosf t A t= ω + φ  and stores the values in two dynamically created arrays x and 

y which are passed to CreateGraph function to be plotted. 
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void CDynamicDlg::OnButtonGraph()  
{ 
 // TODO: Add your control notification handler code here 
 UpdateData(true); 
  
 double* x; 
 double* y; 
  
 x = new double [m_dN]; 
 y = new double [m_dN]; 
 for (int i =0 ; i <m_dN; i++) 
 { 
  x[i] = ((double)(i)/(double)(m_dN)* m_dET); 
  y[i]= m_dA*cos(m_dO*x[i]+m_dP); 
 } 
    m_dlgGraph.CreateGraph(x,y,m_dN, m_dET); 
} 

 
 To attach this function to the Graph button, invoke the ClassWizard and 
select Message Maps. Under the Object IDs window, select IDC_BUTTON_GRAPH 
and double click on BN_CLICKED in the Messages window.  A dialog box will be 
opened and allow you to enter the name of member function you want to attach 
to BN_CLICKED message.  Figure 4 depicts the member functions in CDynamic 
class that are associated with messages.  A screen shot of the output when the 
program is successfully compiled and executed is shown in Figure 5.  Remember 
to include <math.h> in the CDynamicDlg.cpp file. 

 
Figure 4: The ClassWizard showing member functions associated to various messages 
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Figure 5: The output graph. 
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Project: The Resonant Filter 
 

Section 1: Introduction 
 
 How can you tune a radio? More generally, suppose that we have an 
electrical signal with components at a number of different frequencies. How can 
we construct a circuit that will pass some frequencies, but block others? 
 
 In this project, we shall describe and model a resonant filter. We will then 
create a simulation of the resonant filter, and shall use it to determine the 
components of an unknown input signal. 
 

Section 2: Current and Voltage 
 

Let us begin with a brief discussion of electronics. Electric charge is 
measured in units of coulombs (C). One coulomb is equivalent to the charge on 
6.25 × 1018 protons; or equivalently the negative of the charge on 6.25 × 1018 
electrons. The charge on a proton is positive, while the charge on an electron is 
negative. 
 

Electrical current is the amount of electrical charge crossing a point in a 
unit of time. It is measured in amps (A), with 1 A = 1 C/s. Voltage is the amount 
of energy required to move a unit of electrical charge; it is measured in volts (V), 
with 1 V = 1 J/C. Recall that the joule (J) is a unit of energy; 1 J = 1 N m = 1 kg 
m2/s2. 
 
Ohm’s Law  

If two points connected by an electrical conductor (say a wire) have 
different voltages then an electrical current will flow from the point with higher 
voltage to the point with lower voltage. If the voltage difference is V , then the 
amount of current I  that flows satisfies 

IRV =  
where R  is a characteristic of the conductor, called the resistance. This statement 
is Ohm’s Law. The units of resistance are Ohms (Ω), with 1 Ω = 1 V/A.  
 

Wires used to conduct electricity are designed so that their resistance is as 
low as possible. In fact, we shall assume that the resistance in a wire has been 
lowered all the way to zero. As a consequence, any two points on a wire with no 
circuit element between them must be at the same voltage. 

 
However, when designing a circuit, there are times when we deliberately 

want to impede the flow of electricity. This is done by using a circuit element 
called a resistor.  In a circuit diagram, the symbol for a resistor is  
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We often refer to a resistor by its resistance R . 
 
Consider the circuit in Figure 1, where the resistor has resistance R . 

Suppose that the voltage difference between A  and E  is known and called inV . 

The current I  flowing between B  and F  then satisfies IRVin = .  The voltage outV , 

which is the difference in voltage between D  and G , is the same as IRVin = . 

 
 
 
 
 
 
 

 

Section 3: Circuit Elements 
 
Capacitors 

A capacitor is a device for storing charge.  A simple capacitor consists of a 
pair of parallel flat plates. Charge flowing towards one plate accumulates there. 
This creates an electrical field in the region between the plates, which causes the 
opposite charge to accumulate on the opposite plate. The two plates in a capacitor 
can be at different voltages, but because they are not connected, Ohm’s Law does 
not apply.  

 
If the voltage difference between the two plates in the capacitor remains 

constant, then no current flows across the capacitor. If the voltage on one side 
changes, then one plate begins to accumulate charge. The accumulation of charge 
on the opposite plate is equivalent to current flowing across the capacitor. In an 
ideal capacitor, we have the relationship  

dt
dVCI = , 

where I  is the current that flows across the capacitor, V  is the voltage difference 
across the capacitor, and C  is a constant of the capacitor, called is capacitance. 
The unit of capacitance is the Farad (F) with 1 F = 1 C/V. Sometimes we write 
instead that  

∫= dtI
C

V 1
. 

The symbol of a capacitor is  
 
 

inV  outVR
V

A  
V

B
V

D
V

E  
V

F
V

G

Figure 1: A circuit with a single resistor 
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Consider the circuit in Figure 2. Let us suppose for simplicity that no 
current flows from D  to B  to F  to G , but that there is a current I  that flows 
from A  to B  to F  to E . Then the voltage drop from B  to F  is IR , while the 

voltage drop from F  to E  is ∫= dtI
C

V 1
. Combining these, we see that 

.

,1

IRV

dtI
C

IRV

out

in

=

+= ∫  

 
Inductors 

A simple inductor is formed by a tightly coiled piece of wire. Moving 
current in the wire creates a magnetic field in the region between the coils. 
Changing the current in the wire changes the size of the induced magnetic field; 
however, a changing magnetic field creates a voltage difference. In an ideal 
inductor, we have the relationship  

dt
dILV = , 

where V is the voltage across the inductor, I  is the current that flows across the 
inductor, and L  is a constant, called the inductance. The unit of inductance is the 
Henry (H), with 1 H = 1 V s/A = 1 Ω s. 

 
The symbol of an inductor is   

 
 

 
Consider the circuit in Figure 3, and suppose as before that no current 

flows from D  to B  to F  to G . What can we say about inV  and outV ?  

inV  
outV  R

C

A  B D

E  F G

inV  outV  

L

C

R

A  B D

E  F G

Figure 2: Circuit with a resistor and a capacitor 

Figure 3: A circuit with a resistor, capacitor, and inductor 
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Let I  be the current that flows from A  to B  to F  to E . Then the voltage 

drop from B  to F  is IR , the voltage drop from F  to E  is 
1 I dt
C ∫ , and the 

voltage drop from A  to B  is 
dIL
dt

. Combining these, we see that 

 
RIV

ILRIdtI
C

V

out

in

=

′++= ∫
1

 (1) 

 
 The circuit in figure 3 is called a resonant filter. The reason for this is that 
if a sinusoidal voltage inV  is applied, then the amplitude of the output voltage 

depends strongly on the frequency of inV . Certain frequencies will be passed 

through the circuit only slightly changed, while other frequencies will be strongly 
attenuated.  
 
 To demonstrate this effect, we need to understand the behavior of 
solutions to (1). We begin by rewriting (1) as 

 
1

out out out in
L V V V V
R RC

′′ ′ ′+ + = . (2) 

To analyze this equation, we begin by analyzing general second-order, constant-
coefficient differential equations. 
 

Section 4: Properties of Second Order Differential Equations 
 

Consider the initial-value problem 

 
⎪
⎩

⎪
⎨

⎧

=′
=
=+′+′′

1

0

)0(
)0(

yy
yy
fCyyByA

 (3) 

where 0>A , 0>B , and 0>C . What are the analytic properties of the solutions 
to this problem? 
 
The Homogeneous Case 

To analyze (3), begin by assuming that 0=f  for simplicity. This is called 

the homogeneous problem. We look for solutions of the form ktey =  where k  is a 
constant to be determined later. Direct substitution shows that k  satisfies 

02 =++ CBkAk . 
Thus 

A
ACBBk

2
42 −±−

= . 
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There are three possibilities depending on the value of the discriminant 
2 4B AC− . 

Case 1: 042 >− ACB . In this case, both values of k  are negative, and we 
find two different solutions, both of which decay exponentially as ∞→t . 

 
Case 2: 042 <− ACB . In this case, the values of k  form a complex 

conjugate pair, with 

β±α=
−

±−= i
A

BACi
A

Bk
2

4
2

2

. 

 
Here we use the notation 1i = − . To understand the solutions in this case, 

we need to know something of the behavior of the function ( )tiey β+α= . For 

simplicity, we begin by examining ixexg =)( . Recall the Taylor series expansion 

for xe , to wit, 

L+++++= 432

!4
1

!3
1

!2
11 xxxxe x  

Substituting, we see that 

L++−−+= 432

!4
1

!3!2
11 xxixixeix  

Now if we collect all of the real terms and all of the imaginary terms separately, 
we find 

⎟
⎠
⎞

⎜
⎝
⎛ +−+−+⎟

⎠
⎞

⎜
⎝
⎛ +−+−= LL 753642

!7
1

!5
1

!3
1

!6
1

!4
1

!2
11 xxxxixxxeix  

which we immediately recognize as 
xixeix sincos += . 

This famous result is called DeMoivre’s Formula. 
 

Thus, the solution in this case is ( ) ( )titee tti β±β= αβ±α sincos . Now the sum, 
difference, or a constant multiple of two solutions to 0=+′+′′ CyyByA  is also a 

solution, so we obtain the two real solutions tey t β= α cos  and tey t β= α sin . Since 

0
2

<−=α
A

B
, we see that both of our solutions decay exponentially as ∞→t . 

 
Case 3: 042 =− ACB . In this case, our method finds only one solution 
t

A
B

ey 2
−

= .  The second solution has the form 
t

A
B

tey 2
−

= , which can be verified by 
substitution. In this case however, both solutions decay exponentially as t →∞ . 
 
The Nonhomogeneous Case 

Now let us examine what happens in the general case. We want to solve 
the initial-value problem 
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⎪
⎩

⎪
⎨

⎧

=′
=
=+′+′′

1

0

)0(
)0(

yy
yy
fCyyByA

  (3) 

Suppose that we have already determined a function that satisfies 
fCyyByA =+′+′′ , 

and let us call it py . Further, let us suppose that we have two solutions 1y  and 2y  

of the homogeneous problem 0=+′+′′ CyyByA .  
 

The sum, difference, or constant multiple of a solution to the 
homogeneous problem 0=+′+′′ CyyByA  is also a solution of the homogeneous 

problem. Thus, for any pair of numbers 1λ  and 2λ , the combination 

pyyy +λ+λ 2211  

is a solution of  
fCyyByA =+′+′′ .  

Thus, to find a solution to our initial value problem, it is sufficient to find the 
values of 1λ  and 2λ  so that 

12211

02211

)0()0()0(

)0()0()0(

yyyy

yyyy

p

p

=′+′λ+′λ

=+λ+λ
. 

In our case, this is always possible. Because we know that ( )1y t  and ( )2y t  tend to 

zero as t →∞ , the combination 2211 yy λ+λ  is called the transient solution, while 

py  is called the steady state solution. 

 

Section 5: The Gain of the Filter 
 
 Our model for the resonant filter is  

1
out out out in

L V V V V
R RC

′′ ′ ′+ + = . 

Our analysis has shown that the solution of any initial-value problem for this 
equation consists of a transient solution that decays to zero exponentially fast to 
ensure that the initial conditions are satisfied. This is added to the steady-state 
solution, which is any particular solution of the equation. Our analysis however, 
did not describe any method to obtain this particular solution. 
 
 Rather than find the particular solution for an arbitrary choice of inV , let us 

instead look for solutions where the input voltage is the sum of sines and cosines. 
Thanks to exercise 2, we know that if inV  is the sum of two terms, then we can 

analyze each term separately. Thus we can assume that inV  is simply a sinusoid at 

just one frequency. Further, the sum of sinusoids  
( ) ( )1 1 2 2cos sint tλ ω + φ + λ ω + φ  
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can always be rewritten as 

1 2
i t i te eω − ωα +α  

[Exercise 5] so we can assume that inV  is the sum of complex exponentials. Thus, 

we begin our analysis by supposing that 
i t

inV e ω= . 

 
 With this assumption, we need to find a particular solution ( )V t  to the 

equation 
1 i tL V V V i e

R RC
ω′′ ′+ + = ω . 

This solution will be our steady-state solution. Because of the form of inV , we look 

for a particular solution with the form i tV Ge ω= . Substituting, we find that 
2 1L G i G G i

R RC
− ω + ω + = ω . 

Solving for G , we discover that 

21
iG
L i

RC R

ω
=
⎛ ⎞− ω + ω⎜ ⎟
⎝ ⎠

. 

Thus, if inV  is a sinusoid, we conclude that outV  is also a sinusoid, and that the 

ratio /out inV V  is given by 

out

in

V G
V

= . 

 
The quantity G  is called the gain of the filter. It is the ratio of the 

amplitude of the output signal to the input signal. If 0G ≈ , then the signal is 

strongly attenuated, while if 1G ≈ , then the size of the output signal is roughly 

the same size as the input signal.  It is important to note that the gain of the filter 
depends on the frequency of the input signal. For example, if 1R = Ω , 25mHL = , 

and 1 FC = µ , Figure 4 gives the gain G . From this figure, we see that if 6325ω ≈ , 

then the output signal has roughly the same amplitude as the input signal. On the 
other hand, for other values of ω , the signal is strongly attenuated; if 6100ω ≈ , 
then the output signal is roughly 10% of the size of the input signal.  

 
To use our resonant filter to tune to a particular frequency, we want to find 

the value of ωthat maximizes G ; this is the preferred frequency of the filter. To 

find the maximum value, it is algebraically simpler to find the minimum of 1/ G . 

Now 

2 21 1 1 11 1L i L
G i RC R RC R

⎛ ⎞ ⎛ ⎞= + − ω = − − ω⎜ ⎟ ⎜ ⎟ω ω⎝ ⎠ ⎝ ⎠
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so that 
2

2

22
2

2 2

1 1 11

11 .

L
G RC R

L
R LC

⎡ ⎤⎛ ⎞= + − ω⎜ ⎟⎢ ⎥ω ⎝ ⎠⎣ ⎦

⎛ ⎞= + ω −⎜ ⎟ω ⎝ ⎠

 

Thus 

22
2

2 2

1 ,
11

G
L

R LC

=
⎛ ⎞+ ω −⎜ ⎟ω ⎝ ⎠

 

so we conclude that the maximum value of G  is 1 which occurs when 
1
LC

ω = . 

Note that if 25mHL = , and 1 FC = µ , then 
1 2000 10 6325
LC

= ≈ . 

Assignments 
 
 1. Suppose that ( )1y t  and ( )2y t  satisfy the equation 

( ) ( ) ( ) 0Ay t By t Cy t′′ ′+ + = . Show that, for any numbers 1λ  and 2λ , that the 

function ( ) ( )1 1 2 2y t y tλ + λ  also satisfies the equation. 

6100 6200 6300 6400 6500 6600 6700

0.2

0.4

0.6

0.8

1

ω  

G  

Figure 4: The gain G  when 1R = Ω , 25mHL = , and 1 FC = µ , 
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 2. Suppose that ( )1y t  satisfies the equation ( ) ( ) ( ) ( )1Ay t By t Cy t f t′′ ′+ + =  

and ( )2y t  satisfies the equation ( ) ( ) ( ) ( )2Ay t By t Cy t f t′′ ′+ + = . Show that, for any 

numbers 1λ  and 2λ , that the function ( ) ( )1 1 2 2y t y tλ + λ  also satisfies the equation 

( ) ( ) ( ) ( ) ( )1 1 2 2Ay t By t Cy t f t f t′′ ′+ + = λ + λ  

3. Prove that the function 
t

A
B

tey 2
−

=  decays to zero as t →∞ .  

 4. The function ( )y t  decays exponentially to zero if there are numbers 

0λ >  , 0α >  and 0T >  so that ( ) ty t e−α≤ λ  for all t T> . Prove that 
t

A
B

tey 2
−

=  

decays exponentially to zero. [Hint: Choose 
2
B
A

α < , and consider 
( )lim tt

y t
e−α→∞

.] 

 5. Show that, for any choices of the parameters 1λ , 2λ , 1φ , and 2φ , the 

function 
( ) ( )1 1 2 2cos sint tλ ω + φ + λ ω + φ  

can be written in the form 

1 2
i t i te eω − ωα +α  

for some choices of 1α  and 2α .  

6. For the resonant filter, determine the corresponding homogeneous 
solution. What is the condition on L , R , and C  that determines if the transient 
solution has an oscillatory component? 

7. Why does the transient solution have that name? Why does the steady-
state solution have that name? 

Project 
 

Write a C++ program that simulates the behavior of an LRC resonant 
filter. In particular, it should simulate the response of the resonant filter to the 
unknown signal provided in class. 
 
As input, the program should take 

• The inductance, 
• The capacitance, 
• The resistance, and 
• The end time. 

 
As output, the program should return 

• A graph of the initial signal, 
• A graph of the output signal, and 
• The preferred frequency of the circuit. 
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The program should let the user enter the inductance, capacitance, 
resistance, and end time using either slider bars or by directly entering the value 
in text boxes. 
 

The input data is provided in the form of a class CInputData. It has 
methods to retrieve the data, and its derivative. It contains the values of the input 
signal sampled at 1000 equally spaced points in the interval [0,1]. The initial data 
is periodic with period 1, and so this class can be used to retrieve the data for all 
times. 
 

The input data is the sum of two sinusoids of different and unknown 
frequencies. You are to use your simulation to determine these unknown 
frequencies. You should carefully explain your reasoning. 
 

The program should be written using good object oriented programming 
techniques. 
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Adaptive Methods for Ordinary 
Differential Equations 

The Runge-Kutta-Fehlberg Method 

 

Section 1: Introduction 
 

The Runge-Kutta method provides a good estimate of the solution; 
however, it does not also estimate the error in its approximation at the same 
time. The Runge-Kutta-Fehlberg method provides both an estimate for the 
solution and at the same time that it provides an estimate for the error.  

 

Section 2: The Method 
To solve the initial-value problem  

( )
( )0 0

,y f t y

y t y

′ =⎧⎪
⎨

=⎪⎩
 

we need to compute a sequence of times it  and approximations iy  so that 

( )i iy y t≈ . In all of the methods we have learned so far, we would choose a single 

step size h  that we would use for the entire calculation. There is a problem with 
this approach however. The differential equation may need a very small value of 
h  for an accurate approximation, but only for a short period of time. If we used 
one value of h  for the entire computation, either we waste time using a small step 
size for those portions of the computations when it is not required, or we lose 
accuracy by choosing a larger step size. The solution is to allow the step size h  to 
vary as the computation progresses. 
 
 How can we determine how to change the step size in a computation? The 
best way would be to use an estimate for the local error in the computation. What 
is the local error? Suppose that we are calculating a numerical approximation to 
the solution of the initial value problem  

( )
( )0 0

,y f t y

y t y

′ =⎧⎪
⎨

=⎪⎩  
and that we have calculated the approximation ( ),i it y . We then calculate the next 

approximation ( )1 1,i it y+ + . The global error at 1it +  is the difference ( )1 1i iy y t+ +− ; in 

general this is difficult to calculate. To define the local error, suppose that we 
have the same differential equation, but change the initial data to agree with the 
approximation ( ),i it y . In particular, let ( )y t%  be the solution of 



 132

( )
( )

,

i i

y f t y

y t y

′ =⎧⎪
⎨

=⎪⎩

% %

%
. 

Then the local error is ( )1 1i iy y t+ +− % . Although not as useful as the global error, the 

main advantage of the local error is that it is computable. 
 
 In an adaptive method, we will vary the step size for each iteration to 
ensure that the local error is less than some prescribed tolerance at each step. 
This does not guarantee that the global error is small however. 
 
 How can we estimate the local error? One way is to use two different 
numerical methods of two different orders to approximate the solution of the 
equation; in many common cases an estimate of the local error can then be 
derived. The difficulty with this approach is the necessity of doing twice as much 
work. It would be nice if we could perform one set of calculations to obtain two 
different numerical approximations.  
 

One method with this characteristic is the Runge-Kutta-Fehlberg method. 
It is a pair consisting of a fourth-order method and a fifth-order method that 
allows us to estimate the local error. It works as follows. Suppose that the 
approximation ( ),i it y  has already been computed. We then compute the 

following: 
( )1

2 1

3 1 2

4 1 2 3

5 1 2 3 4

6 1

,

1 1,
4 4
3 3 9,
8 32 32
12 1932 7200 7296,
13 2197 2197 2197

439 3680 845, 8
216 513 4104

1 8,
2 27

i i

i i

i i

i i

i i

i i

k h f t y

k h f t h y k

k h f t h y k k

k h f t h y k k k

k h f t h y k k k k

k h f t h y k

= ⋅

⎛ ⎞= ⋅ + +⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ + + +⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ + + − +⎜ ⎟
⎝ ⎠
⎛ ⎞= ⋅ + + − + −⎜ ⎟
⎝ ⎠

= ⋅ + − + 2 3 4 5
3544 1859 112
2565 4104 40

k k k k⎛ ⎞− + −⎜ ⎟
⎝ ⎠

 

Our approximation for the solution is 

 
1 1 3 4 5

25 1408 2197 1
216 2565 4104 5i iy y k k k k+ = + + + − . (1) 

Further, if we calculate the approximation 

 
1 1 3 4 5 6

16 6656 28561 9 2
135 12825 56430 50 55i iy y k k k k k+ = + + + − +%

 (2)
 

Then the local error in the approximation is at most  
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1 1 1 3 4 5 6
1 128 2197 1 2

360 4275 75240 50 55i iy y k k k k k+ +− = − − + +% . 

 The result is a fourth-order method; however this method requires six 
function evaluations per step rather than the four in the traditional fourth-order 
Runge-Kutta method. This extra expense is offset however, by the error estimates 
which we can use to create an adaptive method. 

 

Section 3: The Algorithm 
 

In the following algorithm, we shall use the Runge-Kutta-Fehlberg method 
to compute each step, and the associated local error. If the local error is 
sufficiently small, we shall keep the results of that step, and adjust the step size 
for the next step. If the local error is too large however, we shall drop the results 
of the step, and repeat the process with a smaller step size. 

 
As input, we have a maximum step size (hmax), a minimum step size 

(hmin) and a tolerance (TOL). Suppose that we have already calculated the data 
( ) ( ) ( )0 0 1 1, , , ,..., ,i it y t y t y . We calculate ( )1 1,i it y+ +  as follows. Use the current step 

size, and use (1) and (2) to calculate 1iy +  and 1iy +% . We then set 

1 1 1 3 4 5 6
1 1 1 128 2197 1 2

360 4275 75240 50 55i iR y y k k k k k
h h+ += − = − − + +% . (3) 

If R TOL≤ , then we accept the approximation for 1iy + , and we set 1i it t h+ = + . If 

not, we shall toss out this approximation. 
 

Next we calculate the factor ( )1/ 40.84 /TOL Rδ = . This is our stretch factor 

to adjust the step size. If 0.1δ ≤ , we replace δ  by 0.1; if 4δ ≥ , we replace δ  by 4. 
We then replace h  by hδ . If h  is larger than hmax, we replace h  by hmax. If h  is 
less than hmin, we stop the program with an error saying that the desired 
tolerance could not be maintained. 
 

Section 4: Systems 
 
 The Runge-Kutta-Fehlberg algorithm also works on systems; the 
modifications here are precisely the same modifications that were used for the 
fourth-order Runge-Kutta method. We can create an adaptive method in the 
same fashion as we did above; the only difference is in the computation of the 
quantity R  from (3). 
 
 In the case of a system of n  equations, we know that iy  and ik  are vectors 

with n  components. Suppose that the components of iy  are ,1iy , ,2iy , …, ,i ny  and 

that the components of ik  are ,1ik , ,2ik , …, ,i nk . Then in place of (3) we calculate 
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1 1,1 1,1 1,1 3,1 4,1 5,1 6,1

2 1,2 1,2 1,2 3,2 4,2 5,2 6,2

1, 1, 1, 3, 4,

1 1 1 128 2197 1 2
360 4275 75240 50 55

1 1 1 128 2197 1 2
360 4275 75240 50 55

1 1 1 128 2197
360 4275 75240

i i

i i

n i n i n n n

R y y k k k k k
h h

R y y k k k k k
h h

R y y k k k
h h

+ +

+ +

+ +

= − = − − + +

= − = − − + +

= − = − −

%

%

M

% 5, 6,
1 2

50 55n n nk k+ +

 

In place of R  from (3), we then use 
{ }1 2max , ,..., nR R R R= . 

 

Assignment 
 1. Consider the initial-value problem  

( )

4 1
0 0

y t y
y

⎧ ′ = + +⎪
⎨

=⎪⎩
. 

Write a computer program that takes as input a step size, a minimum step size, a 
maximum step size, a tolerance, and a value of t . Your program should then 
calculate the Runge-Kutta-Fehlberg approximation to ( )y t . 

 2. Consider the initial-value problem  

( ) ( )
( )
( )

sin

0 0

0 1

y t y t t

y

y

′′ + =⎧
⎪

=⎨
⎪ ′ =⎩

. 

Write a computer program that takes as input a step size, a minimum step size, a 
maximum step size, a tolerance, and a value of t . Your program should then 
calculate the Runge-Kutta-Fehlberg approximation to ( )y t . Compare your result 

to the exact solution ( ) 3 sin cos
2 2

ty t t t= −  for different values of the step size h .  
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Project: Dynamics of HIV 
 

Section 1: Introduction 
 
 We shall model the spread of HIV in the body using a simple one-
compartment model to obtain a system of differential equations for the number 
of virus particles, the number of infected T cells, and the number of uninfected T 
cells. We shall use the model to examine the effect of RT inhibitor therapy. 
 

Section 2: The Simple Model 
 

Let us begin with a simple model of the concentration V  of HIV virus 
particles in the blood. There are two main factors governing the number of virus 
particles present. First is the growth rate- this is the rate at which new virus 
particles are produced. This is an unknown function that we call P . Second is the 
clearance rate. The body attempts to clear itself of the virus; we shall assume that 
the rate at which is does so is proportional to the number of virus particles 
already present. This then gives us the simple model 

dV P cV
dt

= − . 

The constant c  is called the clearance rate; it too is unknown. 
 

One immediate consequence of this model is that if we can force 0P ≈ , by 
using an anti-viral drug, for example, then the concentration of the virus in the 
blood will drop exponentially. Indeed, if 0P = , then the model becomes 

dV cV
dt

= −  

which has the solution 

0
ctV V e−=  

where 0V  is the virus concentration at time 0t = ; this solution can be verified by 

substitution. Studied have been undertaken where patients were given anti-viral 
drugs and the concentration of the virus in their blood was measured. The virus 
concentration did drop exponentially, at least for a short period of time, at the 
researchers were able to obtain an estimate for c  of 2.1 0.4±  days. 
 

Section 3: White Blood Cells 
 
 Though helpful, the previous model is too simplistic to accurately 
represent the dynamics of HIV. The virus propagates by infecting white blood 
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cells, and this simple model takes no notice of them. Thus, to create a more 
accurate model, we begin by examining white blood cells. 
 

The primary target for HIV in the blood are white blood cells; in particular 
the CD4+ T cell. After becoming infected, such cells can produce new virus 
particles. The dynamics of CD4+ T cells in the body are not well-understood. 
However, in the absence of HIV, there are three primary factors governing the 
growth rate of the number of CD4+ T cells in the body. First is the rate at which 
they are produced in the body in, for example, the thymus. We shall assume that 
this is a constant s . Next is the rate at which CD4+ T cells die. We shall assume 
that the death rate is proportional to the number of CD4+ T cells present; thus if 
we let T  represent the concentration of CD4+ T cells in the body, then this term 
has the form Td T− , where Td  is the death rate. The last major term comes from 

the fact that CD4+ T cells subdivide on their own. This effect is called the 
proliferation rate. The precise form for this term is unknown, however there is 
some evidence for a density dependent proliferation term. We shall model 
proliferation by a term of the form 

max

1 TpT
T

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

where maxT  is the maximum sustainable number of CD4+ T cells in the body. 

This type of term occurs often in population dynamics, and is called a 
logistic term. To understand it, let us first suppose that maxTT <<  In this case 

max

1 TpT pT
T

⎛ ⎞
− ≈⎜ ⎟

⎝ ⎠
. 

This then predicts a growth rate for the CD4+ T cell population that is 
proportional to the number of cells already  present. On the other hand, for 

maxT T≈ , we have  

max

1 0TpT
T

⎛ ⎞
− ≈⎜ ⎟

⎝ ⎠
 

so that our growth rate slows as T  approaches maxT . Finally we note that if 

maxT T< , then  

max

1 0TpT
T

⎛ ⎞
− >⎜ ⎟

⎝ ⎠
 

so the component of the growth rate due to proliferation is positive, while if 

maxT T>  

max

1 0TpT
T

⎛ ⎞
− <⎜ ⎟

⎝ ⎠
 

and the component of the growth rate due to proliferation is negative.  
 
 Combining these features, we obtain the following model for the CD4+ T 
cell concentration in the absence of HIV 
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max

1 T
dT Ts pT d T
dt T

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
. 

 
For reasonableness, we must have maxTs d T< . This ensures that the number 

of T cells is decreasing when we have reached the maximum concentration. This 
equation has a well-defined stable steady state  

( )2max

max

4
2 T T

T spT p d p d
p T
⎡ ⎤

= − + − +⎢ ⎥
⎣ ⎦

. 

 

Section 4: Interaction of HIV and White Blood Cells 
 

In the presence of HIV, CD4+ T cells become infected. How can we model 
this?  

 
Let *T  be the number of infected T  cells. Assume that the rate at which T 

cells become infected is proportional to the number of T cells and the number of 
virus particles present. This is called a mass-action term, and it is reasonable if 
the virus and the T cells are well mixed, as we might expect in the blood stream. 
In this case, the dynamics of the uninfected CD4+ T cell concentration can be 
modeled by 

max

1 T
dT Ts pT d T kVT
dt T

⎛ ⎞
= + − − −⎜ ⎟

⎝ ⎠
 

where the term kVT−  accounts for those CD4+ T cells that become infected.  
 
 We shall assume that infected T cells are produced only when the virus 
enters an uninfected T cell; thus we can model the concentration *T  of infected 
CD4+ T cells by 

*
*dT kVT T

dt
= −δ . 

Here δ  represents the death rate of infected T cells, which may be different that 
the death rate for uninfected T cells.  We do not model the possibility of an 
infected T cell directly infecting another T cell. 
 
 At this point, we can return to the virus concentration V . If we assume 
that an infected T  cell produces N  new virus particles during its lifetime, then 
we can use the model *P N T= δ  and obtain the equation 

*dV N T cV
dt

= δ − . 

 
 This is a one-compartment model, meaning that we assume all of the virus 
particles and T cells are present in the blood. This is not accurate, because virus 
particles are actually present throughout the body, and the bulk of the T cells are 
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concentrated in lymphoid tissue. However it is expected that blood 
concentrations reflect the state of the body as a whole. 
 

The proliferation term 
max

1 TpT
T

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 in our model does not account for the 

infected T cells; in fact a more reasonable model might be to use the term 
*

max

1 T TpT
T

⎛ ⎞+
−⎜ ⎟

⎝ ⎠
. However, in general we have *T T   so we can neglect the 

impact of the infected cells. 
 
We have ignored loss of virus due to the infection of a T cell; this would 

result in a term kTV−  to the equation for /dV dt . However, measurements show 
that this effect is small compared to the clearance effect. If T  is roughly constant, 
this can also be modeled by modifying the constant *c c kT= + . 
 

The biological mechanism for clearing the virus from the blood is 
unknown. 
 

Section 5: Drug Therapy 
 

A RT inhibitor is a drug that can be used on HIV infected patients. RT is 
an enzyme that is essential for HIV infection; without it a virus particle can enter 
a cell, but is unable to infect it. A perfect RT inhibitor will prevent HIV from 
infecting T cells, so our model becomes 

max

*
*

*

1 T
dT Ts pT d T
dt T

dT T
dt

dV N T cV
dt

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠

= −δ

= δ −

. 

 
Unfortunately, RT inhibitors are not foolproof. A more accurate model 

might be 

( )

( )

max

*
*

*

1 1

1

T
dT Ts pT d T kVT
dt T

dT kVT T
dt

dV N T cV
dt

⎛ ⎞
= + − − − −η⎜ ⎟

⎝ ⎠

= −η −δ

= δ −

 

where η  is the effectiveness of the RT inhibitor. Here 1η =  corresponds to  
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a perfect inhibitor, while 0η =  corresponds to no effect. 
 

Assignments 
 
 1. Show that 

( ) ( )2max

max

4
2 T T

T spT t T p d p d
p T
⎡ ⎤

= = − + − +⎢ ⎥
⎣ ⎦

 

is a constant solution of the differential equation 

max

1 T
dT Ts pT d T
dt T

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
 

modeling the CD4+ T cell concentration in the absence of HIV. 
 2.  Show that the steady-state solution from question 1 is stable. In 

particular, suppose that T T≈ . Show that if T T> , then 0dT
dt

<  and that if T T<  

then 0dT
dt

> . Explain why this implies that T  is a stable solution. 

Project 
 

Write a C++ program that simulates the spread of HIV through the body. 
Include the effect of a RT inhibitor.  
 
Scenario 1 

We shall suppose initially that the patient has virus in the body, but that 
no T cells have yet been infected. 
 

Representative values for the parameters are given below. Units are 
microliters (µL) and days. 

• T - the number of T cells.  Initial value is -11000 LT = µ . 

• *T - the number of infected T cells. Initial value is * -10 LT = µ . 

• V - the number of virus particles. Initial value is 3 -110 LV −= µ . 

• s - the rate at which new T cells are generated in the body. 
-1 -110 day Ls = µ . 

• maxT - the maximum number of T cells in the body. -1
max 1500 LT = µ . 

• Td - the natural death rate of uninfected T cells. -10.02 dayTd = . 

• δ - the death rate of infected T cells. -10.24 dayδ = . 

• c - the clearance rate of the virus. -12.4 dayc = . 

• k - the infection rate. 5 -12.4 10 dayk −= × . 

• N - the number of virus particles produced during the lifetime of an 
infected T cell. 1200N = . 
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• p - the rate of proliferation of T cells. 0.03p = . 
 

Answer the following questions. 
1. What is the short-term behavior of the system? 
2. Use your simulation to show that T , *T , and V  tend to constants as 

t →∞ ; say T T∞→ , * *T T∞→ , and V V∞→  . Estimate these values. 

 3. Explain analytically why 
cT

Nk∞ = , 2
max

Tp dsN pcV
c k Nk T∞

−
= + − , and 

* cT V
N∞ ∞=
δ

. 

4. Does your simulation bear this out? 
 
Scenario 2 

Now let us analyze the effect of an RT inhibitor. Modify the preceding 
values as follows. 
 

Set 
• -1L33.83 µ=T  

• -1
0 L5347 µ=V  

• -1* L56.44 µ=T  
 
Answer the following questions. 

1. Use your simulation to show that there is a critical value of the 
effectiveness parameter η , say critη , so that if critη > η , then * 0T →  and 0V →  as 

t →∞ . Estimate this value. 
2. Show that if critη < η , then that T , *T , and V  tend to constants as t →∞ ; 

say ,T T∞ η→ , * *
,T T∞ η→ , and ,V V∞ η→  . 

3. Doctors say AIDS sets in if 200T < . Show that there is a critical value 

AIDSη  so that if AIDSη > η , then *
, 200T∞ η ≥ . Use you simulation to estimate this 

value. 
4. Find analytically the value of AIDSη . Compare it to the results of your 

simulation. 
 

Write up a technical report that answers these questions. The report 
should describe the model, the numerical methods used to solve the problem, 
your program, and your results.  When answering these questions, you must 
address the question of how the choice of step size affects the result. 
 
The program should be written using good object oriented programming 
techniques. 
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Project: The Double Pendulum 
 

Section 1: Introduction 
 
 In this project, we will construct a model for the double 
pendulum. A double pendulum is a pendulum attached to the end 
of a second pendulum, the whole thing being constrained to move 
in a single plane.  
 
The model for a single pendulum is relatively easy to derive; 
however the double pendulum is much more complex. The best 
approach to modeling the double pendulum is to use Lagrangian 
dynamics, which was shall introduce. 
 
For the project, we will determine if the system has sensitive 
dependence on initial conditions. In particular, do small changes in 
the initial positions of the pendulum cause large variations in the 
subsequent motion of the double pendulum? 
 

Section 2: Modeling the Single Pendulum 
 
 Let us begin with a review of the basic physics of rotating bodies.  
 

To find the torque τ  exerted by a force on a body about a given axis, first 
find the lever arm, which is the line segment from the axis to the point at which 
the force acts. Torque is the product of the length of the lever arm with the 
component of the force in the direction perpendicular to the lever arm.   

The moment of inertia I  of a collection of point masses im  about an axis is 

Figure 1: The double 
pendulum 

Component of force 
perpendicular to lever 
arm 

Axis 

Lever Arm

Force

θ1 

θ2 

Figure 2: Torque 
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the sum i im r∑  where ir  is the distance from mass i  to the axis. In a continuous 

body, the sum is replaced by an appropriate integral. 
 

Newton’s Law for angular motion then says that 
Iτ = α  

where α  is the angular acceleration about the axis. 
 

Consider the pendulum with mass m  and arm of length L  shown in 
Figure 3. To determine its motion, let ( )tθ=θ  be the angle the pendulum makes 
with the vertical. The torque on the pendulum is the product of the component of 
the force perpendicular to the arm multiplied by the length of the arm. The only 

force acting on the pendulum is that of gravity. If we assume for simplicity that 
the mass of the arm is negligible relative to the mass at the end of the arm, then 
the force of gravity is simply mg  pointing directly downward. The component of 
this force perpendicular to the arm is then sinmg− θ , and hence the torque is 

sinLmgτ = − θ . 
The negative sign must be included because the torque due to gravity acts in the 
direction opposite that of the angle θ . 
 

The moment of inertia of the single pendulum is the product of the mass  
and the length of the arm m ; hence I Lm= . Finally, because the angle the 
pendulum makes with the vertical is θ , we know that 

′′α = θ . 
 
 Combining these with Newton’s Law, we find that 

 θ−=θ ′′ sin
L
g

. (1) 

 

Section 3: Energy Methods 
 There is another way that we can derive the model (1). The kinetic energy 
of an object of mass m  moving at velocity v  is the quantity 21

2 mv . On the other 

sinmg θ

θ L

m

Figure 3: The single pendulum 

θ
mg
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hand, the gravitational potential energy of an object of mass m  and height h  is 
mgh . The principle of conservation of energy says that energy is conserved; in 
particular it says that for our pendulum the sum of the kinetic energy and the 
potential energy should be constant. 
 
 For the pendulum, the gravitational potential energy is easy to calculate; 
trigonometry shows us that the height of the mass is cosL− θ  when measured 

from the axis of the pendulum. Thus 
cosPE mgL= − θ . 

On the other hand, to find the kinetic energy of the pendulum, we begin by noting 
that the coordinates of the mass of the pendulum are sinx L= θ , cosy L= − θ  
measured from the axis of the pendulum. Then, if v  is the velocity of the mass of 
the pendulum, we have 

( ) ( )
( ) ( )

( )

2 22

2 22 2 2 2

22

sin cos

.

v x y

L L

L

′ ′= +

′ ′= θ⋅ θ + θ⋅ θ

′= θ

 

Thus 

( )221
2KE mL ′= θ . 

Conservation of energy then requires that  

( )221
2 cosKE PE mL mgL′+ = θ − θ  

is a constant. This means that its derivative is necessarily zero, and thus 

( )21
2 2 sin 0mL mgL′ ′′ ′⋅ θ θ + θ⋅θ = . 

Solving for ′′θ , we obtain (1) again. 
 

Section 4: Hamilton’s Principle 
 
 Although both of the previous methods suffice to construct a model for the 
single pendulum, the double pendulum is more complex. To model it, we shall 
introduce Hamilton’s principle and Lagrangian dynamics. 
 
 Suppose that we have physical system that can be determined by the 
values of n  parameters nqqq ,,, 21 K  (called degrees of freedom).  Suppose also 

θ L

Figure 4: The single pendulum 

sinL θ

cosL θ
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that the mechanical properties of the system are determined by two quantities, 
the potential energy and the kinetic energy. Assume that the kinetic energy KE  
depends on the positions iq , the velocities iq′ , and the time t ; suppose also that 

KE  has the form 

( )1 2
, 1

, , , ;
n

ij n i j
i j

KE K q q q t q q
=

′ ′= ∑ K  

so that it is quadratic in the velocities iq′ . We also assume that the potential 

energy PE  is a function of the positions iq  and the time t , and that it does not 

depend on the velocities iq′ . Hamilton’s principle then says that between any two 

instants of time 0t  and 1t  the system chooses functions ( )tqi  so that the integral 

[ ] ( )1

0
1 2, ,...,

t

n t
J q q q KE PE dt= −∫  

is stationary . 
 
 What do we mean when we say that J  is stationary? Suppose that the 
initial state ( )0iq t  and the final state ( )1iq t  are given. Let ( )ip t  be functions so 

that ( ) ( )0 1 0i ip t p t= = . Then for any real number λ , the functions ( ) ( )i iq t p t+ λ  

have the same initial and final states. Now consider λ  as the variable, and 
examine the function 

( ) [ ]1 1 2 2, ,..., n nF J q p q p q pλ = + λ + λ + λ . 

If ( )F λ  has a minimum when 0λ =  no matter what choice of ip  are made, then 

the original choices of iq  make J  a minimum. Further, because ( )F λ  has a 

minimum when 0λ = , we know that ( )0 0F ′ = . In general, Hamilton’s principle 

attempts to minimize the value of J . However, this does not always occur; what 
does occur is that, even though ( )F λ  might not have a minimum at 0λ = , we 

must have ( )0 0F ′ = . In this case, we say that the integral is stationary. 

 
 The quantity KE PE= −L  has a special name; it is called the Lagrangian 
of the motion.  
 
 To better understand Hamilton’s principle, let us apply it to the single 
pendulum. In this case the state of the system is determined by just one 
parameter, θ , the angle the pendulum makes with the vertical. Thus this problem 
has just one degree of freedom.  
  

From Section 3, we see that the kinetic energy is 

( )221
2KE mL ′= θ  

and the potential energy is  
cosPE mgL= − θ , 

thus the Lagrangian for the single pendulum is  
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( )221 cos
2

mL mgL′= θ + θL . 

 
Hamilton’s principle says that the motion will proceed so that the integral  

[ ] ( )1

0

221 cos
2

t

t
J mL mgL dt⎧ ⎫′θ = θ + θ⎨ ⎬

⎩ ⎭∫  

is stationary. To find the stationary points, let ( )tφ  be any function with 
( ) ( ) 010 =φ=φ tt , and let λ  be a real number. Define 

( ) [ ] ( ) ( )1

0

221 cos
2

t

t
F J mL mgL dt⎧ ⎫′ ′λ = θ + λφ = θ + λφ + θ + λφ⎨ ⎬

⎩ ⎭∫ . 

We can then calculate 

( ) ( ) ( ){ }1

0

2 sin
t

t
F mL mgL dt′ ′ ′ ′λ = θ + λφ φ − θ + λφ ⋅φ∫ . 

Thus  

( ) ( ){ }1

0

20 sin
t

t
F mL mgL dt′ ′ ′= θ φ − θ ⋅φ∫ . 

Integrate by parts in the first term and use the fact that ( ) ( ) 010 =φ=φ tt  to see that 

( ) { }1

0

20 sin 0
t

t
F mL mgL dt′ ′′= − θ − θ φ =∫  

for every φ . Knowing that an integral is zero does not tell us much about the 
integrand, however here we are presented with a special case. We know that 

{ }1

0

2 sin 0
t

t
mL mgL dt′′− θ − θ φ =∫  

for every choice of φ  with ( ) ( )0 1 0φ = φ = . The only way that this can happen for 

every choice of φ  is if the term in the brackets is identically zero; this means that 
2 sin 0mL mgL′′− θ − θ =  

which simplifies to  

θ−=θ ′′ sin
L
g

 

which is exactly (1) once again. 
 

Section 5: Lagrange’s Equations of Motion 
 
 Hamilton’s principle is very powerful, but it is also quite cumbersome. It 
would be nice if the process could be streamlined. In fact, it can, but it requires 
some knowledge of partial derivatives. 
 
Partial Derivatives 

Consider a function of two variables ),( yxf . If we hold the variable y  
fixed, the result is a function of one variable ),( yxfx a . The derivative of this 

function is the partial derivative of ( )yxf ,  with respect to x . It is written as xf  
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or as 
x
f

∂
∂

. Similarly, if we hold x  fixed, we obtain the partial derivative of ( )yxf ,  

with respect to y , written yf  or as 
y
f

∂
∂

. In general we have the definition 

( ) ( ) ( )
h

yxfyhxfyx
x
f

h

,,lim,
0

−+
=

∂
∂

→
 

with a similar expression for 
y
f

∂
∂

.  

 
We shall not discuss partial derivatives in detail, but we do need the 

following Chain Rule. If )(txx =  and )(tyy = , then  

( ) ( )( )
dt
dy

y
f

dt
dx

x
ftytxf

dt
d

∂
∂

+
∂
∂

=, . 

To see why, note the following argument. 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )

( )

( ) ( )( ) ( ) ( )( )
( )

( )

dt
dy

y
f

dt
dx

x
f

h
tyhty

tyhty
tytxfhtytxf

h
txhtx

txhtx
htytxfhtyhtxf

h
tytxfhtytxf

h
htytxfhtyhtxf

h
tytxfhtyhtxftytxf

dt
d

hh

hh

h

h

∂
∂

+
∂
∂

=

−+
−+
−+

+

−+
−+

+−++
=

⎭
⎬
⎫

⎩
⎨
⎧ −+

+
+−++

=

−++
=

→→

→→

→

→

)(lim
)(

,,lim

)(lim
)(

,,lim

,,,,lim

,,lim,

00

00

0

0

Although this argument is not sufficient to be a proof (Why?), it explains the 
basic idea. 
 
Applications to Hamilton’s Principle 

Let ( )1 2 1 2, , , , , , , ;n nKE KE q q q q q q t′ ′ ′= K K  be the kinetic energy of a system, 

and let ( )1 2, , , ;nPE PE q q q t= K  be its potential energy. The Lagrangian is the 

function  
( ) ( ) ( ), ; , ; ,q q t KE q q t PE q t′ ′= −L . 

Hamilton’s principle tells us that the motion proceeds so that the integral 

∫= 1

0

t

t
dtJ L  is stationary. Let ( )nφφφ=φ ,,, 21 K be any function  with 

( ) ( ) 010 =φ=φ tt ii  for each i , and consider 

( ) [ ]1 1 2 2, ,..., n nF J q p q p q pλ = + λ + λ + λ . 

We know that ( ) 0F ′ λ =  when 0λ =   Using partial derivatives, we can evaluate 

the derivative ( )F ′ λ . Indeed 



 149

 

( ) ( )

( ) ( )

1

0

1

01

, ;

, ; , ;

t

t

n t

i it
i i i

d dF q q t dt
d d

q q t q q t
dt

q q=

′ ′λ = + λφ + λφ
λ λ

′ ′ ′ ′∂ + λφ + λφ ∂ + λφ + λφ⎧ ⎫
′= φ + φ⎨ ⎬∂ ∂⎩ ⎭

∫

∑∫

L

L L
&

 

Thus, if we integrate by parts in the first term, we see that 

( ) ( ) ( )1

01

, ; , ;
0

n t

it
i i i

q q t q q tdF dt
dt q q=

′ ′∂ ∂⎧ ⎫
′= − + φ⎨ ⎬′∂ ∂⎩ ⎭

∑∫
L L

 

Then, because the functions 1φ , 2φ , …, nφ  can be chosen freely, we conclude that 

the integrand is zero, and hence 

 0
i i

d
q dt q

∂ ∂
− =

′∂ ∂
L L

 (2) 

for each 1,2,...,i n= . These equations are called Lagrange’s Equations of Motion. 
Though they use partial derivatives, they are much simpler to apply than the 
cumbersome process of finding the stationary points of 

[ ] ( )1

0
1 2, ,...,

t

n t
J q q q KE PE dt= −∫ . 

 
Applications to the Single Pendulum 

We saw in the previous section that, for the single pendulum  

( )221 cos
2

mL mgL′= θ + θL . 

In this case, there is only one variable, so that 1=n  and θ=q . Then 

2

sin ,

.

mgL
q

mL
q

∂ ∂
= = − θ

∂ ∂θ
∂ ∂ ′= = θ

′ ′∂ ∂θ

L L

L L
 

Thus equation (2) becomes 

sing
L

′′θ = − θ . 

 

Section 6: The Double Pendulum 
 
 Now we will use Lagrange’s Equations of Motion to construct a model for 
the double pendulum. Suppose that the first pendulum has a bob with mass 1m  

and arm of length 1L . To this we attach a second pendulum whose bob has mass 

2m  with an arm of length 2L . 
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We begin by calculating the potential 
energy of the system. Referring to Figure 5, we 
see that the height of mass 1 is 1 1cosL− θ , while 

the height of the second mass is  

1 1 2 2cos cosL L− θ − θ . 

Thus, the potential energy is  
( )1 1 1 2 1 1 2 2cos cos cosPE m gL m g L L= − θ − θ + θ . 

 
 Next, we find the kinetic energy of the 
system. Mass 1m  is at position 1 1 1sinx L= θ , 

1 1 1cosy L= − θ  so that 

1 1 1 1

1 1 1

cos
sin

x L
y L
′ ′= θ θ
′ ′= θ θ

 

Its velocity 1v  satisfies 

( ) ( ) ( )2 2 2
1 1 1v x y′ ′= +  

so that it has kinetic energy 

( ) ( )

( )

2 21
1 1 1 1 1 1 12

221
1 1 12

cos sin

.

KE m L L

m L

⎡ ⎤′ ′= θ θ + θ θ⎣ ⎦

′= θ
 

On the other hand, mass 2m  is at position 

2 1 1 2 2sin sinx L L= θ + θ , 2 1 1 2 2cos cosy L L= − θ − θ . Thus 

2 1 1 1 2 2 2

2 1 1 2 2 2

cos cos ,
sin sin .

x L L
y L L
′ ′ ′= θ θ + θ θ
′ ′ ′= θ θ + θ θ

 

It has velocity 2v , where 

( ) ( ) ( ) (
( ) ( ) ( ) (

( )
( ) ( ) ( )

2 2 22
2 2 2 1 1 1 2 2 2 1

2 2 2
1 1 1 1 1 2 2 2

1 2 1 2 1 2 1 2

2 22 2
1 1 2 2 1 2 1 2 2 1

cos cos

cos sin cos

2 cos cos sin sin

2 cos .

v x y L L L

L L L L

L L

L L L L

′ ′ ′ ′= + = θ θ + θ θ +

′ ′ ′= θ θ + θ θ + θ θ +

′ ′+ θ θ θ θ + θ θ

′ ′ ′ ′= θ + θ + θ θ θ − θ
Thus it has kinetic energy  

( ) ( )2 22 21
2 2 1 1 2 2 1 2 1 22 2 cKE m L L L L⎡ ′ ′ ′ ′= θ + θ + θ θ⎣

Combining these, we see that the kinetic energy of our 

( ) ( ) ( )2 22 21 1
1 2 1 1 2 2 2 2 1 22 2KE m m L m L m L L′ ′= + θ + θ +

 
 The Lagrangian L  is given by 

( ) ( ) ( )
(

2 22 21 1
1 2 1 1 2 2 2 2 1 22 2

1 1 1 2 1 1 2cos cos cos

m m L m L m L L

m gL m g L L

′ ′= + θ + θ + θ

+ θ + θ + θ

L

 

θ1 

θ2 

1L

 

2L  

1 1cosL θ

 

1 2cosL θ  

1m  

2m  
Figure 5: The double pendulum
)
)

2
1 2 2 2

2
2 2 2

sin sin

sin

L′ ′θ θ + θ θ

′θ θ
 

( )2 1os .⎤θ − θ ⎦  

complete system is  

( )1 2 2 1cos .′ ′θ θ θ − θ  

( )
)
1 2 2 1

2

cos′ ′θ θ − θ
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We have two degrees of freedom, with 1 1q = θ  and 2 2q = θ . Then 

( )

( ) ( )

2 1 2 1 2 2 1 1 1 1 2 1 1
1 1

1 2 1 1 2 1 2 1 2 2 1

sin sin sin

sin sin

m L L m gL m gL
q

m m gL m L L

∂ ∂ ′ ′= = θ θ θ − θ − θ − θ
∂ ∂θ

′ ′= − + θ + θ θ θ − θ

L L
 

while 

( ) ( )2
1 2 1 1 2 1 2 2 2 1

1 1

cosm m L m L L
q

∂ ∂ ′ ′= = + θ + θ θ − θ
′ ′∂ ∂θ

L L
. 

Applying (2), we see that 
( ) ( )

( ) ( )

1 2 1 1 2 1 2 1 2 2 1

2
1 2 1 1 2 1 2 2 2 1

sin sin

cos .

m m gL m L L
d m m L m L L
dt

′ ′− + θ + θ θ θ − θ

′ ′⎡ ⎤= + θ + θ θ − θ⎣ ⎦
 

Thus 
( ) ( )

( ) ( ) ( ) ( )
1 2 1 1 2 1 2 1 2 2 1

2
1 2 1 1 2 1 2 2 2 1 2 1 2 2 2 1 2 1

sin sin

cos sin

m m gL m L L

m m L m L L m L L

′ ′− + θ + θ θ θ − θ

′′ ′′ ′ ′ ′⎡ ⎤= + θ + θ θ − θ − θ θ − θ θ − θ⎣ ⎦
 

and hence 

 
( ) ( )

( ) ( ) ( )

2
1 2 1 1 2 1 2 2 1 2

2
1 2 1 1 2 1 2 2 2 1

cos

sin sin .

m m L m L L

m m gL m L L

′′ ′′+ θ + θ − θ ⋅ θ

′= − + θ + θ θ − θ
 (3) 

 
 Next we calculate 

( )2 1 2 1 2 2 1 2 2 2
2

sin sinm L L m gL∂ ′ ′= − θ θ θ − θ − θ
∂θ

L
 

and  

( )2
2 2 2 2 1 2 1 2 1cosm L m L L∂ ′ ′= θ + θ θ − θ

′∂θ2

L
. 

Applying (2) once again, we find that 

( ) ( )2
2 1 2 1 2 2 1 2 2 2 2 2 2 2 1 2 1 2 1sin sin cosdm L L m gL m L m L L

dt
′ ′ ′ ′⎡ ⎤− θ θ θ − θ − θ = θ + θ θ − θ⎣ ⎦ . 

Thus 
( )

( ) ( ) ( )
2 1 2 1 2 2 1 2 2 2

2
2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1

sin sin

cos sin

m L L m gL

m L m L L m L L

′ ′− θ θ θ − θ − θ

′′ ′′ ′ ′ ′= θ + θ θ − θ − θ θ − θ θ − θ
 

and hence 

 
( )

( ) ( )

2
2 1 2 2 1 1 2 2 2

2
2 2 2 2 1 2 1 2 1

cos

sin sin .

m L L m L

m gL m L L

′′ ′′θ − θ ⋅ θ + θ

′= − θ − θ θ − θ
 (4) 

 
 Thus, if combine (3) and (4), we see that the system of equations we are to 
solve is  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
1 2 1 1 2 2 2 1 2 1 2 1 2 2 2 2 1

2
1 2 1 1 2 2 2 1 1 2 1

cos sin sin

cos sin sin .

m m L m L m m g m L

L L g L

⎧ ′′ ′′ ′+ θ + θ − θ ⋅ θ = − + θ + θ θ − θ⎪
⎨

′′ ′′ ′θ − θ ⋅ θ + θ = − θ − θ θ − θ⎪⎩
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To this system we add appropriate initial conditions; these are the values of 
( )1 0θ , ( )2 0θ , ( )1 0′θ , and ( )2 0′θ  which are the positions and angular velocities 

when 0t = . 

Assignments 
1.  Use Taylor’s theorem to prove that, for small values of θ  that sin θ ≈ θ . 

Estimate the error. Apply this to the single pendulum and explain why, for small 

angles θ , that θ−=θ ′′
L
g

.  

2. By looking at trigonometric functions, find at least one solution of the 

equation θ−=θ ′′
L
g

.  

3. By looking at trigonometric functions, find the function that satisfies 

( )
( )

0

0

0

0

g
L

⎧ ′′θ = − θ⎪
⎪⎪θ = θ⎨
⎪ ′θ = ω⎪
⎪⎩

 

What is the period of these solutions? What does that say about the period of the 
pendulum? 
 
We know that the shortest distance between two points is a straight line. In 
questions 4-9 we shall prove this fact. 
 

4. Let ( )ty  be a function for which ( ) ay =0  and ( ) by =1 . Write down an 
integral that gives the length of this curve. 

5. Explain why the choice of function ( )ty  which has the shortest length is 
stationary for the integral 

[ ] ( )∫ ′+=
1

0

21 dtyyJ . 

6. To find the stationary points, let ( )tφ  be any function with ( ) ( ) 010 =φ=φ , 
let λ  be a real number, and set 

( ) [ ]F J yλ = + λφ . 

Explain why we know that if ( )ty  has the shortest length then ( )0 0F ′ = .  

7. Show that ( )
( )

1

20
0

1

yF dt
y

′ ′φ′ =
′+

∫ . 

8. Explain why we know that if ( )ty  has the shortest length then  

( )
0

1 2
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′+

′

y

y
dt
d

. 
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9. Solve this equation to conclude that y′  is constant, and that 

consequently ( )ty  is a straight line. 
 
10. What is the flaw in the argument used to show why 

( ) ( )( )
dt
dy

y
f

dt
dx

x
ftytxf

dt
d

∂
∂

+
∂
∂

=, ? 

 

Project 
 

Write a C++ program that simulates the motion of a double pendulum. 
 

As input, the program should take 
• The initial positions and angular velocities of the two bobs, 
• The step size for the simulation, and 
• The total time for the simulation. 

 
As output, the program should return 

• Graphs of angle versus time for each of the angles in the double 
pendulum, 
• A graphical representation of the motion of the bodies, and 
• The final positions and angular velocities of the two bobs. 

 
The program should let the user set the position of the double pendulum 

using the mouse or a text input. Changes in the initial position of the pendulum 
should be reflected in the graph of the double pendulum, before the simulation 
begins. The user should be able to choose the scale in each of the angle versus 
time graphs. The simulation should use a fourth order Runge-Kutta scheme. 
 

The program should be written using good object oriented programming 
techniques. 
 

You are to use your simulation to investigate the stability of the double 
pendulum as the initial data is modified.  
 

You are then to write up a technical report that answers the following 
questions: 

• What is the mathematical model of the problem? 
• What is the numerical method used to solve the problem? 
• What is the structure of your program? 

 
The differential equation  

( )
( )0 0

,y f t y

y t y

′ =⎧⎪
⎨

=⎪⎩
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displays sensitive dependence on initial conditions at ( )0 0,t y  if small changes in 

either 0t  or 0y  can produce significant changes in the solution.  

Does the double pendulum display sensitive dependence on initial 
conditions? If so, does this always happen, or is it true only for some data? 
 

When answering these questions, it is essential that you address the 
question of how the choice of step size affects the result. You must run the 
simulation for different step sizes to draw correct conclusions. 
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The Mouse 
 

Section 1: Introduction 
 
 Many programs use the mouse to perform essential functions. To illustrate 
how we can integrate the mouse into our code, we shall write a simple program 
that uses the mouse to drag a ball across the screen.  
 

Section 2: The Skeleton 
 
 Create a dialog based program called Mouse. The main dialog requires no 
functionality save for the OK button which we rename Exit Program. We add a 
new dialog called IDD_GRAPH where the drawing will take place. We remove the 
controls placed there by the default creation process, and uncheck the System 
Menu box from the Styles property tab from the Properties dialog box. 
 
 We use the Class Wizard to associate this dialog box with the class 
CGraph. We add just one private variable to the class, of type CPoint called 
m_ptCenter. This will hold the value of the center of the ball we plan to draw on 
the screen. To initialize this variable correctly, we add a message handler for 
WM_INITDIALOG and add the code 
 

BOOL CGraph::OnInitDialog()  
{ 
 CDialog::OnInitDialog(); 
  
 // TODO: Add extra initialization here 
 
 CRect MainWindow; 
 GetClientRect(MainWindow); 
 m_ptCenter = MainWindow.CenterPoint(); 
  
 return TRUE;  // return TRUE unless you set the focus to a 
control 
               // EXCEPTION: OCX Property Pages should 
return FALSE 
} 

 
 To display the window, we add a private variable m_wndGraph  to the 
CMouseDlg class, and add the following code to the OnInitDialog() method 
of the CMouseDlg class: 
 

 m_wndGraph.Create(IDD_GRAPH); 
 m_wndGraph.ShowWindow(SW_SHOW); 
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Finally, we add a message handler for the WM_PAINT message for CGraph 
and add the following code 
  

void CGraph::OnPaint()  
{ 
 CPaintDC dc(this); // device context for painting 
  
 // TODO: Add your message handler code here 
 
 CBrush* OldBrush; 
 CBrush GreenBrush; 
 
 GreenBrush.CreateSolidBrush(RGB(0,255,0)); 
 OldBrush = dc.SelectObject(&GreenBrush); 
 
 dc.Ellipse(m_ptCenter.x-25,m_ptCenter.y-25, 
  m_ptCenter.x+25,m_ptCenter.y+25); 
 
 dc.SelectObject(OldBrush); 
  
 // Do not call CDialog::OnPaint() for painting messages 
} 

If we compile and run this program, it will simply display a green ball in the 
center of the screen.  

Section 3: The Mouse Handler 
 
 To use the mouse in our code, we must capture and use the messages that 
windows sends to our program that describe the state of the mouse. There are a 
number of different possible windows messages that can be sent when the user 
uses the mouse. These include: 

• WM_MOUSEMOVE 
• WM_LBUTTONDOWN 
• WM_LBUTTONUP 
• WM_LBUTTONDBLCLK  
• WM_RBUTTONDOWN 
• WM_RBUTTONUP 
• WM_RBUTTONDBLCLK 

To see how these windows messages can be used, we shall write a handler the 
WM_MOUSEMOVE method and use it to move the ball around the screen. The 
other messages can be handled in a similar fashion, and used to extend the 
functionality of our program. 

 
From the CGraph class, add a message handler for WM_MOUSEMOVE. 

You will be presented with the following default code 
 
void CGraph::OnMouseMove(UINT nFlags, CPoint point)  
{ 

// TODO: Add your message handler code here and/or call 
default 
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 CDialog::OnMouseMove(nFlags, point); 
} 

 
The CPoint variable point contains the screen coordinates of the mouse. The 
nFlags variable is an integer that contains flags that describe which keys and 
mouse buttons are down. Options for this variable include 

• MK_CONTROL   Set if the Control key is down. 
• MK_LBUTTON   Set if the left mouse button is down. 
• MK_RBUTTON   Set if the right mouse button is down. 
• MK_SHIFT   Set if the Shift key is down. 

Because these are used as flags however, some subtlety is required in their use. If 
we want to check if the Shift key is down, we can not use code like the following 
 

if(nFlags == MK_SHIFT) 
{ 
 // Do something cool 
} 

 
This is because the value for the nFlags variable is a bitwise combination of all 
of the possible combinations. Thus, if the Shift key and the left mouse button 
were both pressed, we would not have nFlags=MK_SHIFT, nor would we have 
nFlags=MK_LBUTTON. Instead we would have  
 

nFlags= MK_SHIFT | MK_LBUTTON  
 
provided no other keys / mouse buttons were pressed. Recall here that | is bitwise 
OR. 
 

Thus, we modify the OnMouseMove method to read as follows 
 

void CGraph::OnMouseMove(UINT nFlags, CPoint point)  
{ 

// TODO: Add your message handler code here and/or call 
default 

  
 CDialog::OnMouseMove(nFlags, point); 
 
 if((nFlags & MK_LBUTTON) == MK_LBUTTON ) 
 { 
  m_ptCenter = point; 
  Invalidate(); 
 } 
} 

 
Note how we used the bitwise AND operator & to determine if the left mouse 
button was pressed. 
 
 If we compile and run this code, we will be able to use the mouse to drag 
our ball to any point on the screen. 
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Section 4: Resizing the Window 
 
 All the dialog boxes we have used so far have been of a fixed width. 
However, it is a simple matter to allow the user to modify the size of a dialog box 
as the code is running. Indeed, from the Properties menu for the dialog box, 
select the Styles tab, and change the setting in the Border pull-down box to 
Resizing. 
 

 
Figure 1: Allowing a dialog box to be resized 

Assignments 
 
 1. What would the program do if you used the mouse and clicked just one 
single point? Explain your answer by referring to the code. Modify the program 
so that it behaves more intuitively. 
 2. Modify this program so that the clicking the right mouse button is used 
to modify the size of the ellipse. 
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Project: Diffusion 
 
 

Section 1: Introduction 
 
Suppose that we have an industrial plant emitting smog into the 

atmosphere at some rate. We would like to know the concentration of smog at 
different distances from the plant. 

 
In this project, we shall construct a model for a diffusion process; this 

model will be in the form of a partial differential equation. We will learn how to 
solve this equation numerically using finite difference methods. We shall briefly 
discuss the convergence, consistency, and stability properties of finite difference 
methods. 

 

Section 2: The Model 
 

Method #1: System of Differential Equations 
Suppose that the plant is located at 0=x . Consider the interval [ ]L,0  for 

some real number L . Subdivide this region into n  subintervals, and let nLh /=  
be the width of one subinterval. Let 00 =x , hx =1 , hx 22 = , …, hnxn )1(1 −=− , and 

Lnhxn ==  be the endpoints of the subintervals. Let u  be the concentration of 

smog in the air; in particular let ( )tui  be the concentration of smog at the point ix  

at time t . 
 

Suppose that rate of change of the smog concentration at a point is 
proportional to the difference between the concentrations at adjacent points. Our 
model becomes  
 [ ]11 2)( −+ +−=′ iiii uuuctu  (1) 

for some constant of proportionality c , at least for 11 −≤≤ ni . Note that this 
equation can not hold when 0i =  or i n=  because these are the endpoints. Thus, 
we have 1n −  equations in the 1n +  variables ( )iu t , and we need to add boundary 

conditions to solve this problem. Provided the boundary conditions are specified, 
this system can be solved by using, for example, a Runge-Kutta method. 
 

The form of the right hand side of (1) has special significance. Let ( )f x  be 

a function. Then Taylor’s theorem tells us that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )42 3 4 51 1 1
2 6 24f x h f x hf x h f x h f x h f x O h′ ′′ ′′′+ = + + + + +  

and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )42 3 4 51 1 1
2 6 24f x h f x hf x h f x h f x h f x O h′ ′′ ′′′− = − + − + +  
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so that if we add these equations, we see that 
( ) ( ) ( ) ( ) ( )422 hOxfhxfhxfhxf +′′+=−++ . 

Hence 

( ) ( ) ( ) ( ) ( )2 42f x h f x f x h h f x O h′′+ − + − = +  

As a consequence, if ( )txuu ,= , our model can be thought of as an approximation 

to the equation ( ) xxxxt uuchu γ== 2 . 

 
Partial Derivatives 

Consider a function of two variables ),( yxf . If we hold the variable y  
fixed, the result is a function of one variable ),( yxfx a . The derivative of this 

function is the partial derivative of ( )yxf ,  with respect to x . It is written as xf  

or as 
x
f
∂
∂

. Similarly, if we hold x  fixed, we obtain the partial derivative of ( )yxf ,  

with respect to y , written yf  or as 
y
f
∂
∂

. In general  

( ) ( ) ( )
h

yxfyhxfyx
x
f

h

,,lim,
0

−+
=

∂
∂

→
, 

with a similar expression for 
y
f
∂
∂

. 

 
Model #2: Partial Differential Equation 

Let ( )txuu ,=  be the concentration of smog at the point x  at time t . 

Choose any interval ( ) [ ]Lba ,0, ⊂ . The total amount of smog in ( )ba,  is 

∫
b

a
dxtxu ),( , so the rate of change is  

∫∫ =
b

a t

b

a
dxtxudxtxu

dt
d ),(),( . 

 
Where did the smog go? It must have left the interval through the 

endpoints. If the smog concentration on both sides of a point is the same, then we 
expect that there is no diffusion of smog across that point. On the other hand, if 
there is a significant difference in the smog concentration, we expect the smog to 
quickly diffuse from the area of higher concentration to the area of lower 
concentration. Thus, we expect that the rate smog diffuses across a point depends 
on the derivative xu .  For simplicity, we suppose it leaves the endpoints at the 

rate xuγ . Thus smog leaves the interval ( )ba,  at the rate  

( )∫ γ=γ
b

a xx
b

ax dxtxuu ),( . 

 
Combining these, we find that, for any interval ( )ba,  that 

 ( ) ( )∫∫ =γ
b

a t

b

a xx dxtxudxtxu ,),( , 



 161

and hence 

( ), 0
b

t xxa
u x t u dx− γ =⎡ ⎤⎣ ⎦∫ . 

Because the interval ( ),a b  is arbitrary, we conclude that 

xxt uu γ= . 

 
Model #3: Probabilistic Model 
 

Let j
iu  be the concentration of particles at the point ihxi =  at time jktn = . 

Here k  is a chosen unit of time. Let p  be the probability that a smog particle at 

ix  will jump to 1+ix  in time k ; we also let p  be the probability that a smog 

particle at ix  will jump to 1−ix  in the same time period. The probability that it 

remains at ix  is then p21− . Then 

 ( ) j
i

j
i

j
i

j
i uppupuu 2111

1 −++= +−
+ . 

This is called the Chapman-Kolmogorov equation of the process. Rewrite this 
equation as  

2
11

21 2
h

uuu
k
hp

k
uu j

i
j

i
j

i
j

i
j

i −+
+ +−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−
. 

As 0, →kh , this equation becomes xxt uu γ= , provided kph /2=γ . (The limiting 

process here is very delicate!) This last equation  

xxt uu γ= , 

is called the Fokker-Planck equation for the continuous process. 
 
Generalizations 
 

The preceding derivations apply to problems more general than to smog. 
They apply more generally to diffusion processes. As an example, these 
derivations also apply to the flow of heat. The equation xxt uu γ=  is called the heat 

equation, or the diffusion equation. 
 

Section 3: Finite Difference Methods 
 

Our diffusion process is modeled by the equation xxt uu γ= . In this section, 

we shall  consider the initial value problem  

 ( ) ( )⎪⎩

⎪
⎨
⎧

=

γ=

=
xutxu

uu

t

xxt

00
,

  . (2) 

In particular, we shall put off discussion of boundary conditions. 
 

To solve this equation, we shall choose a spatial grid size h  and a time step 
k . We then set mhxm =  and nktn =  and we use the approximation ( )nm

n
m txuu ,≈ . 
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A finite-difference method for solving the equation (2) is a set of equations for the 
approximations n

mu . There are a number of different finite difference methods 

that we can use; below we present a number of methods. 
 
Forward Time, Central Space 

Taylor’s Theorem applied to the function ( ),t u x ta  says that  

( ) ( ) ( ) ( )2,,, kOktxutxuktxu t ++=+ , 

so applying this result at the grid point ( )nm tx , , we find that 

 ( ) ( )kO
k

uu
txu

n
m

n
m

nmt +
−

=
+1

, . 

Similarly  
( ) ( ) ( ) ( ) ( ) ( )4

62
32 ,,,,, hOtxutxuhtxutxuthxu h

xxx
h

xxx +±+±=± . 

Thus, adding these two results at the grid point ( )nm tx , , we find that  

( ) ( )2
2

11 2
, hO

h
uuu

txu
n
m

n
m

n
m

nmxx +
+−

= −+ . 

Thus  

[ ] ( ) ( )
1

21 1
2

2n n n n n
m m m m m

t xx
u u u u u

u u O k O h
k h

+
+ −⎡ ⎤− − +

− γ − − γ = +⎢ ⎥
⎣ ⎦

. 

The Forward Time, Central Space approximation to the diffusion equation is then 

 2
11

1 2
h

uuu
k

uu n
m

n
m

n
m

n
m

n
m −+
+ +−

γ=
−

. (3) 

The error in the approximation is ( ) ( )kOhO +2 . This is an explicit method in the 

following sense. From the initial data ( ) ( )00
,

t
u x t u x

=
= , we can determine all of 

the approximations 0
mu . Solving (3), we see that 

( )1
1 12 2n n n n n

m m m m m
ku u u u u

h
+

+ −

γ⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

. 

We can use this equation to find all of the approximations 1
mu , the repeat the 

process to find 2
mu , 3

mu  and so on. 

 
Backward Time, Central Space 

The backward time, central space scheme is 

 2

1
1

11
1

1 2
h

uuu
k

uu n
m

n
m

n
m

n
m

n
m

+
−

++
+

+ +−
γ=

−
. (4) 

The derivation is similar to the derivation for the Forward Time Central Space 
method and has error ( ) ( )kOhO +2 . However unlike that method this is an 

implicit scheme. Indeed, once 0
mu  is known, we see that (4) is a set of equations 

for 1
mu  which we have to solve through some method. 
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Crank-Nicolson (1947) 
The Crank-Nicolson scheme is 

⎭
⎬
⎫

⎩
⎨
⎧ +−

+
+−

γ=
− +

−
++

+−+
+

2

1
1

11
1

2
11

1 2
2
12

2
1

h
uuu

h
uuu

k
uu n

m
n
m

n
m

n
m

n
m

n
m

n
m

n
m . 

This too is an implicit scheme, but with error ( ) ( )22 kOhO + . Note the higher 
accuracy! 
 
Leapfrog Scheme 

The Leapfrog scheme is  

2
11

11 2
2 h

uuu
k
uu n

m
n
m

n
m

n
m

n
m −+

−+ +−
γ=

−
. 

This is a two-step scheme, meaning that the calculation of 1n
mu +  requires 

knowledge of the solution at two prior times n
mu  and 1n

mu − . This causes some 

difficulty in implementation; indeed to calculate 2
mu , we need to know 1

mu  and 0
mu . 

Since our scheme does not give us a way to calculate 1
mu , we must use some other 

method to do so. The error in the Leapfrog scheme is ( ) ( )22 kOhO + . 
 
DuFort-Frankel 

The DuFort Frankel scheme is 
( )

2
1

11
1

11

2 h
uuuu

k
uu n

m
n
m

n
m

n
m

n
m

n
m −

+−
+

−+ ++−
γ=

−
. 

This is similar to the Leapfrog scheme; it is a two-step scheme, with error 
( ) ( )22 kOhO + . 

 

Section 4: Convergence, Consistency, and Stability 
 

We would like to know which of the methods we have presented are good, 
and which are bad. The concepts used to make that determination actually apply 
to many more partial differential equations than just the diffusion equation 
presented here.  Define  

t xxPu u u= − γ ; 

then the diffusion equation simply requires 0Pu = . 
 

Convergence 
Consider a partial differential equation 0=Pu  that is first order in time. A 

finite difference scheme 0, =n
mhk uP  is convergent if given a solution ),( txu  of the 

partial differential equation with )()0,( 0 xuxu = , then given any initial data 0
mu  

with ( )xuum 0
0 →  as xxm →  we have ( )txuu n

m ,→  as ( ) ( )txtx nm ,, →  while 0, →kh . 
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This is the key property we want our finite difference method to have, 
because it says that our approximation are close to the actual solution. However, 
in general, it is very difficult to use the definition to prove that a scheme is 
convergent. 
 
Consistency 

A finite difference scheme 0, =n
mhk uP  is consistent with the partial 

differential equation 0=Pu if  
0, →φ−φ PP hk  

 as 0, →kh  for all smooth functions φ . All of the schemes we have discussed are 
consistent.  
 

Example: For the forward time central space scheme  

xxtP γφ−φ=φ , 

while  

2
11

1

,
2
hk

P
n
m

n
m

n
m

n
m

n
m

hk
−+

+ φ+φ−φ
γ−

φ−φ
=φ . 

Thus 
( ) ( )( ) ( ) ( ) ( ) 022

, →+=γφ−φ−++γφ−φ=φ−φ hOkOhOkOPP xxtxxthk . 

 
Consistent schemes do not need to be convergent! Though we want all of 

our schemes to be consistent, this is not sufficient. 
 

Example: Consider the initial value problem  

( )⎪⎩

⎪
⎨
⎧

=

=+

=
xfu

uu

t

xt

0

0
. 

 This has solution  
)(),( txftxu −=  

which can be verified by substitution. The solution at time t  is just the initial data 
translated to the right by a distance t .  
 

The scheme  

01
1

=
−

+
− +

+

h
uu

k
uu n

m
n
m

n
m

n
m  

is a consistent scheme with error ( ) ( )kOhO + . Note however, that this is 
equivalent to  

( )n
m

n
mh

kn
m

n
m uuuu −−= +
+

1
1  

so that the solution at time 1+nt  depends only on the value of the solution at time 

nt  at the same point and points to the right; thus the scheme moves information 

to the left. 
 

If  
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⎩
⎨
⎧

<
>

=
01
00

)(
x
x

xf , 

then  

⎩
⎨
⎧

<
>

=
tx
tx

txu
1
0

),( . 

However  
0=n

mu  

for 0>mx , for all time nt . 

 
Stability 

A finite difference scheme 0, =n
mhk uP  for a (first-order in time) partial 

differential equation is stable if there are numbers J , 0h , and 0k  so that for every 

time T  there is a constant TC  with 

∑ ∑∑
=

≤
m

J

j m

j
mT

n
m uhCuh

0

22
 

where Tnk ≤≤0 , 00 hh ≤< , and 00 kk ≤< . 

 
 Roughly, this says that the size of the solution at time nt  is bounded by an 

multiple of the size of the solution at 0t , 1t , …, Jt . This is related to the concept for 

solutions of partial differential equations called well-posedness. 
 

The initial value problem for the (first order in time) partial differential 
equation 0=Pu is well-posed if for all T  there is a constant TC  so that every 
solution satisfies 

∫∫
∞

∞−

∞

∞−
≤ dxxuCdxtxu T

22 )0,(),(  

for Tt ≤≤0 . 
 
 This says that the size of the solution at time t  is no larger than a multiple 
of the size of the solution at time 0t = .  
 

The diffusion equation is well posed. 
 

Lax-Richtmyer Equivalence Theorem 
The key method used to determine if a finite difference method is 

convergent is the Lax-Richtmyer Equivalence Theorem.  
 
A consistent finite difference scheme for a (first order in time) partial 

differential equation for which the initial value problem is well posed is 
convergent if and only if it is stable. 

 



 166

We have already seen that checking consistency of a finite difference 
method is not too difficult; if we can find a simple way to check stability, then we 
will be able to determine is a finite difference method is convergent. 

 

Section 5: Von Neumann Analysis 
 

The idea of Von Neumann analysis is that, to determine the stability of a 
finite difference method, it is sufficient to analyze trigonometric functions.  

 
In particular, to determine if a finite difference scheme is stable, we simply 

need to analyze how the scheme acts on trigonometric functions. We look for 
solutions of the form  

θ= imnn
m egu . 

[Recall θ+θ=θ sincos iei .]  The function ( )g θ  is a complex valued function called 

the amplification factor for the method. We can determine g  by substituting this 
form into the finite difference method. In a one step scheme there is one solution, 
while in a two-step scheme there are two solutions. 

• In a one step scheme, the scheme is stable if and only if 1≤g . 

• In a two-step scheme, the scheme is stable if each of the roots ±g  

satisfies 1≤±g , and at least one of the roots satisfies 1<g . 

 
Example: The forward time, central space scheme is 

2
11

1 2
h

uuu
k

uu n
m

n
m

n
m

n
m

n
m −+
+ +−

γ=
−

. 

This can be written as 
( )n

m
n
m

n
m

n
m

n
m uuuuu 11

1 2 −+
+ +−λ+=  

where 2h
kγ

=λ . Substituting, we find that 

( )θ−θθ+θθ+ +−λ+= )1()1(1 2 minimnminimnimn egegegegeg  
so 

( )θ−θ +−λ+= ii eeg 21 . 
Now 

2
sin4

2
cos142cos22 2 θ−=⎟

⎠
⎞

⎜
⎝
⎛ θ−

−=−θ=+− θ−θ ii ee  

so that 

2
sin41 2 θλ−=g . 

To have stability, we need 1|| ≤g , or equivalently 

1sin411 2
2 ≤λ−≤− θ , 

which means  
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0sin42 2
2 ≤λ−≤− θ . 

Thus we have stability if and only if  

2
1

2
2sin ≤λ θ  

for all θ ; this is equivalent to the restriction that  

2
1

2 ≤
γ

=λ
h
k

. 

 
 This restriction is problematic in practice. Suppose that 1γ = , and 1L = . If 

we were to use 100 grid points in space, we would then need to set 1
100 0.01h = = . 

To use Forward Time Central Space, we must have 2
1≤λ , which requires 2

1
2

k
h
γ

≤ . 

This simplifies to the requirement that 21
2 0.00005k h≤ = . This has the practical 

effect of (dramatically) increasing the time needed to perform a computation. If 
we wanted to approximate the value of the solution when 1t = , we will need to 
perform 20,000 time steps in forward time central space. 
 
 In the exercises, you will show that the Backward Time Central Space 
method and the Crank-Nicolson method are stable for all values of λ , while the 
Leapfrog method is unstable for all values of λ . Because the Backward Time 
Central Space method and the Crank-Nicolson have no stability restrictions on 
the step size, they are more suited for practical use. The downside to these 
methods is that they are implicit, which makes them more difficult to code. 
 

Section 6: Boundary Conditions 
 
 As we saw in Section 2, to solve the diffusion equation, we need initial data 
and boundary data. In this section we shall discuss the different types of 
boundary data that can be given, and how they affect our numerical methods for 
computing the solution. 
 
 We shall impose one boundary condition at each end- at 0x =  and x L= , 
however the conditions do not need to be of the same type. To simplify the 
discussion below, we shall assume that we are imposing the condition at 0x = . 
 
Dirichlet Conditions 

A Dirichlet condition at 0x =  takes the form 
Atu =),0(  for all t . 

If we are using the diffusion equation to model heat flow, then this condition 
means that the boundary is kept at a fixed temperature.  In general, the value A  
can be allowed to depend on time. 

 
This condition is simply implemented by setting Au n =0  for all t  at each 

time. 
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Neumann Conditions.  

A Neumann condition at 0x =  takes the form 
( ) Atux =,0  for all t . 

If we are using the diffusion equation to model heat flow, and if ( ) 0,0 =tu x  for all 

t , the boundary is insulated, meaning that heat does not flow across the 
boundary. This is also called the adiabatic case. In general, if ( ) Atux =,0  for all t , 

the heat flux across the boundary is prescribed. 
 
To implement this condition, we could use the approximation 

( ) ( )hO
h

uu
t

x
u nn

n +
−

=
∂
∂ 01,0  

to determine nu0 . However, this method is only )(hO  accurate, and will degrade 

schemes like forward-time central-space, and Crank-Nicolson; thus it is not used.  
 

Instead, there are two different methods that are encountered in practice. 
First, we can use the approximation  

( ) ( )2210 43
,0 hO

h
uuu

t
x
u nnn

n +
−+−

=
∂
∂

 

to determine nu0 . This method is )( 2hO  accurate. 

 
In the second method, we assume that there is a hypothetical grid point at 

1−x , and use the second order approximation  

( ) ( )211

2
,0 hO

h
uut

x
u nn

n +
−

=
∂
∂ − . 

By applying the finite difference method used to solve the equation the at the grid 
point 0x , we obtain another equation for nu 1− , allowing us to eliminate nu 1− . For 

example, if ( ) 0,0 =tu x , and we are using the forward-time, central-space scheme, 

then  

( )1
0 0 1 0 12 2n n n n nku u u u u

h
+

−

γ⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

 

so setting 2/k hλ = γ  and substituting  

( )1 1 0, 0
2

n n

n
u u u t

h x
−− ∂
= =
∂

 

we see that  

( )
( )

1
0 0 1 0 1

0 1

2

1 2 2 .

n n n n n

n n

u u u u u

u u

+ = + λ − +

= − λ + λ
 

Thus, knowing the values of n
mu , we can determine the value of the boundary 

datum 1
0
nu + . 
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Boundary Conditions of the third kind 
At 0x = , these conditions have the form 

( ) ( ) 0,0,0 =− tcutux  

or  
( ) ( )[ ]Utuctux −= ,0,0 . 

These conditions arise because it is impossible to obtain pure Dirichlet or pure 
Neumann conditions in practice. 
 

Use any of the techniques described for Neumann conditions to 
approximate xu . 

 
 

Section 7: The Thomas Algorithm 
 

The Backward-Time Central-Space scheme and the Crank-Nicolson 
scheme are implicit schemes, because they do not give us an explicit formula for 
the values of 1+nu  in terms of the different values of nu , but rather give us an 
equation that the 1+nu  must solve. In this section, we shall examine equations of 
this type. 
 

Suppose that we have 1+M  unknowns Muuu ,...,, 10 , and suppose that we 

know that they satisfy the 1−M  equations 
 iiiiiii ducubua =++ +− 11   11 −≤≤ Mi  (5) 

together with two other equations. 
 

To solve this system, we shall use the Thomas algorithm. We look for a 
relationship among the variables iu  of the form 

 iiii qupu += +1  10 −≤≤ Mi  (6) 

where the values ip  and iq  are to be determined. Substitute this into (5) to see 

that 

iiiiiiiii ducubqupa =+++ +−− 111 )( . 

Thus  

iiiiiiiii dqaucubpa =+++ −+− 111 )(  

or 

iii

iii
i

iii

i
i bpa

qad
u

bpa
c

u
+

−
+

+
−

=
−

−
+

− 1

1
1

1

. 

Comparing this with (6), we see that 
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⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−

=

+
−

=

−

−

−

iii

iii
i

iii

i
i

bpa
qad

q

bpa
c

p

1

1

1  11 −≤≤ Mi . (7) 

Thus, if we know 0p  and 0q , we can use (7) to determine ip  and iq  for 

11 −≤≤ Mi . 
 
Dirichlet Data 

How we proceed, now depends on which other two equations we add to 
(5). For our first case, let us suppose that 

⎩
⎨
⎧

β=
β=

MMu
u 00 . 

Because 00 β=u , then (6) for 0=i  which is 0100 qupu +=  has the solution 00 =p , 

00 β=q . We then use (7) to determine ip  and iq  for 11 −≤≤ Mi . Then to 

determine the solution, we use (6), starting with the fact that we know MMu β= . 

In particular, because 1−Mp  and 1−Mq  are now known, we can calculate 

MMMM qpu +β= −− 11  and then continue inductively. 
 
Neumann Data 

As a second case, suppose that  

⎩
⎨
⎧

=+
=+

− MMMMM dubua
ducub

1

01000 . 

The first of these can be written as 

0

0
1

0

0
0 b

d
u

b
c

u +
−

=  

so we set 
0

0
0 b

c
p

−
=  and 

0

0
0 b

d
q = .  To determine Mu , we substitute (6) into the 

second of our equations to see that 
( ) MMMMMMM dubqupa =++ −− 11  

so that 

MMM

MMM
M bpa

qad
u

+
−

=
−

−

1

1 . 

 
We handle the mixed cases in the same fashion. 

 
The Thomas algorithm is not a good choice for every tridiagonal system. In 

particular, if 1>ip , then this algorithm will magnify errors every time it is run. 

One condition which ensures that 1≤ip  is diagonal dominance. This is the 
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requirement that iii bca ≤+ . This condition should be checked before this 

algorithm is used. 
 

Assignments 
 

1. Verify that, if let ( )tui  be the concentration of smog at the point ix  at 

time t  and if the rate of change of the smog concentration at a point is 
proportional to the difference between the concentrations at adjacent points, 
then  [ ]11 2)( −+ +−=′ iiii uuuctu . 

2. Let ( )f x  be a continuous function defined on the interval [ ]0, L . We 

shall prove that if ( ) 0
b

a
f x dx =∫  for every ( ) [ ], 0,a b L⊂ , then ( ) 0f x = . 

a. Show that if ( )0,z L∈ , and ( ) 0f z > , then there exists a number 0ε >  so 

that for all ( ),x z z∈ − ε + ε  we have ( ) ( )1
2 0f x f z> > . [Hint: What is the 

definition of a continuous function?] 
b. Suppose that ( ) 0f z > . Show that there is an interval ( ) [ ], 0,a b L⊂  so that 

( ) 0
b

a
f x dx >∫ . 

c. Suppose that ( ) 0f z < . Show that there is an interval ( ) [ ], 0,a b L⊂  so that 

( ) 0
b

a
f x dx <∫ . 

d. Suppose that ( ) 0f z ≠ . Show that there is an interval ( ) [ ], 0,a b L⊂  so that 

( ) 0
b

a
f x dx ≠∫ . Conclude. 

3. Show that the heat equation is well posed. [Hint: Multiply the equation 
by ),( txu , and integrate in x  and t . Use integration by parts. You can assume 
that 0),( →txu  as ∞→x , for every t .] 

4. Show that the Leapfrog scheme is consistent, with accuracy 
( ) ( )22 kOhO + . 

5. Show that the Crank-Nicolson scheme is consistent, with accuracy 
( ) ( )22 kOhO + . [Hint: Use the fact that xxttt uu γ=  and 

( ) ( ) ( )2
1 ,, kOkutxutxu xxtnmxxnmxx ++=+ .] 

6. Show that the Backward Time Central Space method is stable for all  

2

k
h
γ

λ = .  

7. Show that the Crank-Nicolson scheme is stable for all 2

k
h
γ

λ = .  

8. Show that the Leapfrog scheme is unstable for all 2h
kγ

=λ .  
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9. Prove the approximation ( ) ( )2210 43
,0 hO

h
uuu

t
x
u nnn

n +
−+−

=
∂
∂

. 

10. Suppose that Atux =),0( . Use the approximation 

( ) ( )211

2
,0 hO

h
uut

x
u nn

n +
−

=
∂
∂ −  and the forward-time central-space scheme to obtain 

an equation for 1
0
+nu  in terms of nu0 , nu1 , and the parameters A , h , and λ . 

 

Project 
 

Write a C++ program that simulates the diffusion of heat in one 
dimension. 
 

As input, the program should take 
• The type of boundary data (Dirichlet or Neumann) at each endpoint 
and its value. 
• The diffusion coefficient. 
• The user should be able to use the mouse to determine the initial data. 
• The step size for the simulation. 
• The total time for the simulation. 

 
As output, the program should return 
• A graphical representation of temperature of the object. 

 
The user should be able to select which method is used to compute the 

solution- either 
• Forward-Time Central-Space, or 
• Backward-Time Central-Space. 

 
The program should be written using good object oriented programming 

techniques. 
 

You are then to answer the following questions: 
1. Consider a 60 cm long steel rod (with 15.0=γ  cm2/s). Suppose that the 

ends are kept at 0o, and that initially the first 30 cm of the rod are at 100o, 
while the last 30 cm of the rod are at 0o. Use your simulation to determine 
the temperature of the rod after 10 minutes have elapsed. What is the 
value of the temperature at the center of the rod? 

2. Consider the same steel rod. Suppose that heat is supplied through the left 
end of the rod at the rate 10o/m, while the right end is kept at 0o. Suppose 
that initially the entire rod is at 0o. Use your simulation to determine the 
temperature of the rod after 10 minutes have elapsed. What is the value of 
the temperature at the center of the rod? 
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Write a good report of your findings, including 
• What is the mathematical model of the problem? 
• What is the numerical method used to solve the problem? 
• What is the structure of your program? 

 
When answering these questions, it is essential that you address the question of 
how the choice of step size affects the result. You must run the simulation for 
different step sizes to draw correct conclusions. 



 174

 



 175

Timers 
 

Section 1: Introduction 
 
 There are times when a programmer wants a piece of code to be executed 
at particular times. One example would be a program that displays a clock; we 
would want to update the clock’s display once each second. A second example 
would be a program with animated graphics. Rather than have the graphics 
redrawn as often as the code permits, we would instead like to have the graphics 
drawn at some predetermined rate, say 20 frames per second. 
 
 To illustrate these ideas, we shall write a short program that rotates a ball 
across the screen at a smooth rate of 20 frames per second. At the same time, the 
program will display the current time. 
 

Section 2: The Skeleton 
 
 We begin with a dialog based program without About box called Timers. 
We shall remove the Cancel box, and modify the OK box to read Exit Program. 
Next, we add a button called Draw with an ID of IDC_DRAW. We remove the 
default static text, and add two static text boxes. The first says “The current time 
is ” while the second simply says “Current Time”. The ID for the first of these can 
remain in its default setting of IDC_STATIC. However, because we want to 
modify the text in the second box to give the current time, we must give it a 

unique ID. In our case we use IDC_CURRENT_TIME. At this point, our dialog box 
looks like Figure 1. 

Figure 1: The Timers dialog box 
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 Our program will draw a ball on the screen, and move it in a circle when 
the Start button is pressed. Thus we need to add a variable to keep track of the 
position of the ball, we must initialize it, and we must modify the OnPaint() 
method to draw it. We begin by adding the private variable m_ptBall of type 
CPoint. Because we want the ball to move in a circle, we shall also add a private 
variable m_ptCenter of type CPoint which will store the center point of our 
dialog box, and will be used as the center of the circle that the moving ball will 
traverse. We initialize these variables in the OnInitDialog() method with the 
following code 
 

BOOL CTimersDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 

// Set the icon for this dialog.  The framework does this 
automatically 

 //  when the application's main window is not a dialog 
 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 
 CRect CurrentRect; 
 GetClientRect(CurrentRect); 
 m_ptCenter = CurrentRect.CenterPoint(); 
 m_ptBall = m_ptCenter + CPoint(50,0); 
  
 return TRUE;  // return TRUE  unless you set the focus to a 
control 
} 

 
Next we need to add code to the OnPaint() method. We can do this with the 
following code 
 

void CTimersDlg::OnPaint()  
{ 
 if (IsIconic()) 
 { 
  CPaintDC dc(this); // device context for painting 
 

SendMessage(WM_ICONERASEBKGND, (WPARAM) 
dc.GetSafeHdc(), 0); 

 
  // Center icon in client rectangle 
  int cxIcon = GetSystemMetrics(SM_CXICON); 
  int cyIcon = GetSystemMetrics(SM_CYICON); 
  CRect rect; 
  GetClientRect(&rect); 
  int x = (rect.Width() - cxIcon + 1) / 2; 
  int y = (rect.Height() - cyIcon + 1) / 2; 
 
  // Draw the icon 
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  dc.DrawIcon(x, y, m_hIcon); 
 } 
 else 
 { 
 
  CPaintDC dc(this); 
 
  CBrush* OldBrush; 
  CBrush PurpleBrush; 
  PurpleBrush.CreateSolidBrush(RGB(128,0,255)); 
  OldBrush = dc.SelectObject(&PurpleBrush); 
 
  CRect Ball(m_ptBall,m_ptBall); 
  Ball.InflateRect(10,10); 
  dc.Ellipse(Ball); 
 
  dc.SelectObject(OldBrush); 
   
 
  CDialog::OnPaint(); 
 } 
} 

 
Only the portion of the code in the box is new; the rest was inserted by the MFC 
AppWizard when the program skeleton was first created. 
 
 To have our ball move on the screen, we need to add some code to the 
Start button. We call that function OnButtonDraw(), and start with the following 
code 
 

void CTimersDlg::OnButtonDraw()  
{ 
 // TODO: Add your control notification handler code here 
 
 double width = (double)(m_ptBall.x - m_ptCenter.x); 
 
 double x; 
 double y; 
 const double pi = 4.0*atan(1.0); 
  
 double count = 500; //Draw ball 500 times per circuit 
 for(int i=0; i<= 4.0*count; i++) //Make 4 circuits 
 { 
  x = cos(2.0*pi*(double)(i)/count); 
  y = sin(2.0*pi*(double)(i)/count); 
 

m_ptBall = m_ptCenter + CPoint( (int)(width * x), 
(int)(width*y) ); 

 
  Invalidate(); 
  OnPaint(); 
 } 
  
} 

Note that this code requires that you include <math.h>.  



 

 
 At this point, we can compile and run our program. When the start button 
is pressed, the ball will make four complete circles about the center of our dialog 
box, but the motion is choppy and flickers a great deal. One reason for this is that, 
our code attempts to redraw the screen every time through the loop. Since the 
loop is not terribly complex, this occurs very rapidly. Hence the code spends most 
of its time drawing and erasing balls on the screen. On my machine, the loop 
takes about 2 seconds to execute, so we attempt to redraw the screen 500 times in 
two seconds- yet my monitor is set at 85 Hz, so the monitor will only refresh 170 
times in two seconds. Thus, it is not surprising that the image flickers. To control 
this problem, we shall rewrite the code so that we only attempt to draw the screen 
20 times per second. We begin by removing the lines 
 
  Invalidate(); 
  OnPaint(); 
 
from our OnDrawButton() code. 
 

Section 3: Timers 
 
 A timer is a resource like a dialog box, however the process of adding a 
timer resource to a program is somewhat different. From the main menu, choose 
View, then Resource Symbols. Equivalently, you can go to the Resource Tab, then 
right-click on Timers Resources, and select Resource Symbols. In either case you 
are presented with a dialog box like that in Figure 2. We then add a new resource 

symbol called ID_TIMER
we selected 101. 

 
Figure 2: The Resource Symbols menu
178

. You can use any unused positive integer for the value, 
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 To make use of this timer, we must initialize it. We can do so in the 
OnInitDialog() method of our CTimersDlg class by adding the boxed code 
below. 
 

BOOL CTimersDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 
 // Set the icon for this dialog.  The framework does this 
automatically 
 //  when the application's main window is not a dialog 
 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 
 CRect CurrentRect; 
 GetClientRect(CurrentRect); 
 m_ptCenter = CurrentRect.CenterPoint(); 
 m_ptBall = m_ptCenter + CPoint(50,0); 
 
 
 SetTimer(ID_TIMER,50,NULL); 
 
  
return TRUE;  // return TRUE  unless you set the focus to a 
control 
} 

 
The function SetTimer is a member of CWnd, which is inherited by CDialog 
and hence by CTimersDlg.  It takes three parameters. The first is the ID of a 
timer; in our case this is ID_TIMER. The second parameter is the time, in 
milliseconds, between timer messages. We set our to 50 milliseconds so that it 
fires 20 times each second. Last is a pointer to a callback function; if this is left 
NULL as in our case, the messages are handled by the usual message queue.  
 
 Timers are a limited resource, and only a small number are available for 
use. The SetTimer function returns an integer value; if it is zero the attempt to 
set the timer was unsuccessful.  
 
 We have set our timer to use the usual message queue; this means that 
every 50 milliseconds a WM_TIMER message will be sent. We can then construct a 
handler for this message and write code that will be executed at predetermined 
times. There is one caveat to this process however; the WM_TIMER message will 
not be sent if our program’s message queue has unprocessed messages. We will 
see the effect of this later. 
 
 We can now add a message handler for the WM_TIMER message.  It is 
called OnTimer and its default code is 
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void CTimersDlg::OnTimer(UINT nIDEvent)  
{ 
 // TODO: Add your message handler code here and/or call 
default 
  
 CDialog::OnTimer(nIDEvent); 
} 

 
The one parameter it receives, nIDEvent is identifier of the timer. In our case 
since we are only using one timer, this parameter will not be needed. 
 

Section 4: The Clock 
 
 To see how we can use the WM_TIMER messages, we will modify our 
program to display the current time. To do so, we first use the Class Wizard to 
associate a variable to the static text with ID of IDC_CURRENT_TIME where our 
time will be displayed. This will be a variable of type CString called 
m_strTime.   
 

The class CString is a class in MFC for handling strings. It supports most 
of the common string operations. If m_strString is a CString variable, you 
can assign it a value simply by the code 

 
m_strString = “This is the value of my string” 

 
You can concatenate strings using the + operator. To convert a number to a 
string, we use the format function.  
 

The format function takes two or more arguments. The last are the values 
that are to be converted into a string, while the first, enclosed in quotes, is the 
formatting of the string using the standard format specifications for the ANSI C 
functions printf and wprintf.  There are different codes that describe the type 
of variable: 

• %d or %i  indicate a signed decimal integer,  
• %u indicates an unsigned decimal integer, 
• %f is for doubles in the form 123.456, and 
• %e is for a double in the form 1.23456e+02.  

In each case, the width of the result can be specified by an integer before the 
letter code. Thus %3d returns a signed integer of width 3. If the leading number is 
a zero, then the width will be filled by leading zeros. These codes can be separated 
by any characters; the character % is indicated by %%.  
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Examples: 
 Code Output 
 Format(“%d:%d”,10,1) 10:1 
 Format(“%d %02d”,10,1) 10 01 
 Format(“%d text! %02d”,10,1) 10 text! 01 
 Format(“%d %02d:%d”,12,3,90) 12 03:90 
 Format(“%d %02d:%.2f”,12,3,90.1) 12 03:90.10 
 Format(“%d%% %02d - %.3e”,12,3,90.1) 12% 03 – 9.010e+001 
 
 To display the current time, we need to first obtain the current time. We 
can do this by using the GetCurrentTime function of the CTime class. Because 
this is a static member function, we use the following code to initialize it 
 

 CTime curTime = CTime::GetCurrentTime(); 
 
This puts the current time into the CTime variable curTime. The CTime 
methods GetHour(), GetMinute() and GetSecond() return integers that 
contain the hour, minute, and second recorded in that CTime object.  
 

We can then display the result on the screen by using the following code. 
 
void CTimersDlg::OnTimer(UINT nIDEvent)  
{ 
 // TODO: Add your message handler code here and/or call 
default 
  
 CTime curTime = CTime::GetCurrentTime(); 
 
 m_strTime.Format("%2d:%02d:%02d",curTime.GetHour(), 

curTime.GetMinute(),curTime.GetSecond()); 
 UpdateData(FALSE); 
 
 CDialog::OnTimer(nIDEvent); 
} 

 
Note the formatting that was used in the string, as well as the usual 
UpdateData(FALSE) command to update the values on the screen. 
 
 At this point, if we compile and run the program, it will keep the current 
time. Next, we modify the code that revolves the ball to eliminate the flicker we 
have already seen. 
 

Section 5: Using Timers for Animation 
 
 We would like to use our timer to redraw the screen each time it is called. 
Because only a portion of the screen needs to be redrawn each time, we shall only 
redraw the portions of the screen where the ball is to appear and disappear. To do 
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this, we add a new private variable of type CPoint called 
m_ptLastDrawnCenter. This will keep track of the CPoint of the center of the 
ball the last time it has been drawn on the screen. We initialize it to be the same 
as m_ptCenter in the OnInitDialog() routine, which now reads as follows. 
 

BOOL CTimersDlg::OnInitDialog() 
{ 
 CDialog::OnInitDialog(); 
 

// Set the icon for this dialog.  The framework does this 
automatically 

 //  when the application's main window is not a dialog 
 SetIcon(m_hIcon, TRUE);   // Set big icon 
 SetIcon(m_hIcon, FALSE);  // Set small icon 
  
 // TODO: Add extra initialization here 
 
 CRect CurrentRect; 
 GetClientRect(CurrentRect); 
 m_ptCenter = CurrentRect.CenterPoint(); 
 m_ptBall = m_ptCenter + CPoint(50,0); 
 m_ptLastDrawnBall = m_ptBall; 
 SetTimer(ID_TIMER,50,NULL); 
 
  
 return TRUE;  // return TRUE  unless you set the focus to a 
control 
} 

 
We then modify the OnTimer() function to first check to see if the ball 

has moved. If so, it determines the area of the screen previously occupied by the 
ball and the area of the screen that the ball will occupy. It then uses 
InvalidateRect() to ensure that these areas are redrawn, then calls 
OnPaint(). The resulting OnTimer() function then reads as follows. 

 
void CTimersDlg::OnTimer(UINT nIDEvent)  
{ 
 // TODO: Add your message handler code here and/or call 
default 
  
 if(m_ptBall != m_ptLastDrawnBall) 
 { 
  CRect OldBall(m_ptLastDrawnBall, 
                    m_ptLastDrawnBall); 
  CRect CurrentBall(m_ptBall,m_ptBall); 
   
  OldBall.InflateRect(10,10); 
  CurrentBall.InflateRect(10,10); 
  
  InvalidateRect(OldBall); 
  InvalidateRect(CurrentBall); 
 
  m_ptLastDrawnBall = m_ptBall; 
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  OnPaint(); 
 } 
  
  
 CTime curTime = CTime::GetCurrentTime(); 
 
 m_strTime.Format("%2d:%02d:%02d",curTime.GetHour(),curTime.
GetMinute(),curTime.GetSecond()); 
 UpdateData(FALSE); 
 
 CDialog::OnTimer(nIDEvent); 
} 
 

The new material is boxed. 
 
 One might expect that these are all of the changes that need to be made. 
Compiling and executing the code, you will find however, that the ball will not 
move when the Draw button is pressed. The see what has occurred, let us modify 
the number of iterations in our main loop; increasing it to 500,000 from 500. 
This gives us the following code for OnButtonDraw() 
 

void CTimersDlg::OnButtonDraw()  
{ 
 // TODO: Add your control notification handler code here 
 
 double width = (double)(m_ptBall.x - m_ptCenter.x); 
 
 double x; 
 double y; 
 const double pi = 4.0*atan(1.0); 
  
 double count = 500000; 
 for(int i=0; i<= 4.0*count; i++) 
 { 
  x = cos(2.0*pi*(double)(i)/count); 
  y = sin(2.0*pi*(double)(i)/count); 
 

m_ptBall = m_ptCenter + CPoint( (int)(width * x), 
(int)(width*y) ); 

 
//  Invalidate();  We now use timers to control  
//  OnPaint();   the drawing process 
 } 
 
  
} 

 
When this code is run, you will see that the clock will pause momentarily when 
the Draw button is pressed, and increasing the value of count increases the 
length of the pause.  
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The only explanation for this behavior is that the OnTimer() method is 
not being called. How can this occur? Recall that the WM_TIMER message will not 
be sent if there is another message waiting in the applications message queue. 
What happens is that the program waits to finish executing the 
OnButtonDraw() code before pulling another message off the queue. This 
leaves an uncalled WM_TIMER message on the queue, and no new WM_TIMER 
messages will be sent until OnButtonDraw() completes. 

 
How can we avoid this situation? The solution is to add code to the 

OnButtonDraw() function to determine if there are new messages in the queue. 
If so, these should be handled before the loop continues. We can do this with the 
following code. 

 
void CTimersDlg::OnButtonDraw()  
{ 
 // TODO: Add your control notification handler code here 
 
 double width = (double)(m_ptBall.x - m_ptCenter.x); 
 
 double x; 
 double y; 
 const double pi = 4.0*atan(1.0); 
 
 MSG msg; 
  
 double count = 500000; 
 for(int i=0; i<= 4.0*count; i++) 
 { 
  x = cos(2.0*pi*(double)(i)/count); 
  y = sin(2.0*pi*(double)(i)/count); 
 

m_ptBall = m_ptCenter + CPoint( (int)(width * x), 
(int)(width*y) ); 

 
  while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 
//  Invalidate();  We now use timers to control  
//  OnPaint();   the drawing process 
 } 
  
} 

 
The variable type MSG represents a system message. The precise nature of 

the message structure does not concern us here; details can be found in the help 
system. 

 
The PeekMessage command has the following general structure 
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BOOL PeekMessage(LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT 
wMsgFilterMax, UINT wRemoveMsg)      ); 

 
The variable lpMSG is a pointer to an MSG variable; if a message is in the queue, it 
will be stored here. The variable hWnd is the window whose message queue is to 
be examined. If hWnd is NULL then PeekMessage returns all of the messages 
available to the program. The variables wMsgFilterMin and wMsgFilter filter 
the available messages based on their order of arrival; if both of these are zero 
then no filtering is performed. The last parameter determines the ultimate fate of 
the message; if it is set to PM_REMOVE then the message is removed from the 
queue after it is read by PeekMessage. 
 
 The TranslateMessage and DispatchMessage functions are aptly 
named, and we shall not delve into their details. Together, they take the message 
stored in msg and deliver it. In particular, they ensure that our WM_TIMER 
messages are delivered, and that the OnTimer() function is called. 
 

Section 6: Enabling and Disabling Buttons 
 
 There is one difficulty with this approach. The button Draw starts code by 
sending a message. Suppose that a user presses the Draw button. Then, while the 
animation is occurring, the user presses the Draw button once again. That 
message will be received and sent on its way by our code  
 
  while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
 
This will cause execution to pass to the beginning of the OnDrawButton 
function. This will occur despite the fact that the first pass through the 
OnDrawButton function has not yet terminated. This will cause unpredictable 
behavior.  Similarly, if the End Program button is pressed, the program will 
attempt to terminate; when this process is completed, the remainder of the 
OnDrawButton function will execute, again causing unpredictable behavior. 
 
 To solve this problem, we shall disable the Draw button and Exit Program 
button while the animation is occurring. To do so, we use the method 
GetDlgItem which is inherited from CWnd. Given an ID, it returns a pointer to 
the CWnd object that displays it. The elements of a dialog box are treated as 
windows and derived from CWnd. Thus, we can use the members of CWnd to 
enable and disable the buttons. The resulting code is below; the new material is 
boxed. 
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void CTimersDlg::OnButtonDraw()  
{ 
 // TODO: Add your control notification handler code here 
 
 double width = (double)(m_ptBall.x - m_ptCenter.x); 
 
 double x; 
 double y; 
 const double pi = 4.0*atan(1.0); 
 
 MSG msg; 
  
 GetDlgItem(IDC_BUTTON_DRAW)->EnableWindow(FALSE); 
 GetDlgItem(IDOK)->EnableWindow(FALSE); 
 
 double count = 5000000; 
 for(int i=0; i<= 4.0*count; i++) 
 { 
  x = cos(2.0*pi*(double)(i)/count); 
  y = sin(2.0*pi*(double)(i)/count); 
 

m_ptBall = m_ptCenter + CPoint( (int)(width * x), 
(int)(width*y) ); 

 
  while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 
//  Invalidate();  We now use timers to control  
//  OnPaint();   the drawing process 
 } 
 
 GetDlgItem(IDC_BUTTON_DRAW)->EnableWindow(TRUE); 
 GetDlgItem(IDOK)->EnableWindow(TRUE); 
  
} 

 
This technique is very general and very powerful, and can be used to 

modify the elements of a dialog box during run time. 
 
 

Assignments 
 
 1. Though the code in Section 6 disables the Draw button and the Exit 
Program button, there are other messages that can still be sent to the program 
that will cause unpredictable behavior. What are they? 
 2. What is a multi-threaded program? How do the concepts of a multi-
threaded program apply to our program? [Hint: This will require further 
reading!] 



 

Project: Waves 
 

Section 1: Introduction 
 

How do waves propagate? To understand the answer to this question, we 
begin by asking what is a wave. There are a number of types of waves, but we 
shall be interested in two main types: 

• Compression Waves, 
• Transverse Waves. 

An example of a transverse wave is the vibration of a string. 

The wave moves from left to right, but the string itself moves up and down. 
 

A compression wave is also called a longitudinal wave, because the 
oscillation is in the same direction as the direction of motion.  
 

The wave moves from left to
from left to right. 
 
 We shall construct a m
transverse wave. We shall th
 

Section 2: Compression 
 
 We begin by construc
a long thin rod. If we hold th
material at the left end of the

Wave Motion 

Wave Motion 

Figure 1: A transverse wave 

e 
Figure 2: A compression wav
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 right, and the individual components also move 

odel of a compression wave and another model of a 
en learn how to simulate each. 
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ting a model of a type of compression wave. Consider 
e rod in place, and then strike the left end, the 
 rod moves towards the right, along the rod. This 
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creates an area of increased density at the left of the rod, and this area travels 
down the length of the rod. The result is a compression wave. 
 

To create our model, let us imagine that the rod is composed of a large 
number of identical flat discs. We then need to decide two things- 

• How does each disc behave? 
• What is the relationship between the discs? 

 
Because we want our model to be as simple as possible, let us suppose that 

the only thing that our individual disc can do is to move from side to side. An area 
of high pressure will be an area where the discs are clustered close together, while 
an area of low pressure will be modeled by an area where the discs are far apart. 

 
What relationship exists between the discs? We want each disc to exert 

some force on its neighbor. When those discs are far apart, we want the force 
between them to pull the discs together. On the other hand, when the discs are 
close together, we want the force between them to push them apart. A simple, 
physically reasonable force with these properties is a spring 
 

Each spring has a natural length, which is the length of the spring when no 
forces are being exerted by the spring. Hooke’s Law for springs says that a 
stretched spring exerts a restoring force proportional to the distance that the 

Force 

High density area 

   Disc motion 

High Pressure Low Pressure 

Figure 3: The effect of striking a rod on its end 

Figure 4: The disc model of the rod 

Figure 5: High pressure and low pressure in the disc model 
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spring is stretched from its natural length. If the natural length of a spring is h  
and its current length is x , then Hooke’s Law implies that the force F  exerted by 
the spring is 

( )F x h= −τ −  
where τ  a some positive constant, called the spring constant. 
 

We suppose that the force between the discs in our rod acts like a small 
spring. 
 

Label the discs 0, 1, 2, …, n , starting from the left end of the rod. All of the 
discs and springs in our rod are identical, so we assume that the spring constant 
τ  is the same for every spring. Further, if the total length of the rod is L , the 
natural length of each spring is  

 /h L n= . (1) 
Let the distance from the end of the rod to disc i  be denoted by iy  

 
We want to determine the force acting on disc i . First we shall compute 

the force exerted by disc 1i − . The distance from disc 1i −  to disc i  is 1i iy y −− . 

Thus, Hooke’s Law says that the force , 1i iF −  exerted on disk i  by disc 1i −  is 

( ), 1 1 .i i i iF y y h− −= −τ − −  

 
Similarly the force exerted by disc 1i +  on disc i  is  

( )1, 1 .i i i iF y y h+ += −τ − −  

The force exerted by disc i  on disc 1i +  is equal and opposite to the force exerted 
by disc 1i + on disc i ; consequently, the force exerted by disc i  on disc 1i +  is  

( ), 1 1 .i i i iF y y h+ += τ − −  

 
Since these are all of the forces acting on disc i , we conclude that the total 

force acting on disc i  is 
( ) ( )
( )

1 1

1 12 .
i i i i i

i i i

F y y h y y h

y y y
+ −

+ −

= τ − − − τ − −

= τ − +
 

 

Disc 1i −  

Distance iy  

Disc i  

Figure 6: Distances in the disc model 
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Now that we know the force acting on disc i , we can determine the motion of this 
disc with the aid of Newton’s Law. In particular, since the acceleration of disc i  is 

iy′′  we know that  

( )1 12i i i imy y y y+ −′′= τ − +  

where m is the mass of disc. Thus  

( )1 12 .i i i iy y y y
m + −

τ′′= − +  

Note that this equation only holds for discs i = 1, 2, …, n – 1. It does not hold for 
disc 0 or for disc n  because they do not have two adjacent discs. 
 
 To finish our model, we need to determine the behavior of the end discs. 
Since we do not want the rod to change its total length, we shall fix the end discs 
at the endpoints of the rod. In particular, we require 

( )
( )

0 0,

n

y t

y t L

=

=
 

for all values of t. 
 

Our model for the spread of a compression wave is then 

 

( )1 1

0

2 1 1,

0,
.

i i i i

n

y y y y i n
m

y
y L

+ −
τ′′= − + ≤ ≤ −

=
=

 (2) 

 
The problem with this model is that the parameters m  and τ  are not known. For 
this model to be useful, we need to relate these to parameters that we can 
determine. 
 

Since there are a total of 1n +  discs, each of mass m , then we know that 
the total mass of the rod is ( )1n m+ , and thus the density ρ  of the rod is  

( )1n m
AL
+

ρ =  

where the cross sectional area of the rod is A. Because the rod is split into a large 
number of discs, we know n  is large, and hence 

1 1n
n
+

≈ . 

Thus if we use (1), we see that 
( )1 1 1

/
n m n m m

AL n L n A hA
+ +

ρ = = ≈  

and hence in our equation we can replace m  by hAρ .  
 

The Young’s Modulus of a solid, denoted by E, is defined to be the ratio 
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/
/

F AE = −
δl l

 

where F  is an applied force, A  is the cross sectional area, l  is the length of a 
portion of the solid, and δl  is the change in the length of that portion caused by 
the force. Young’s modulus measures the compressibility of a solid. 
 

Since we model the force between adjacent discs by springs with natural 
length h, we know that F = −τ⋅δl  and h=l  so that 

.h hE
A A

τ ⋅δ τ
= =

δ
l

l
 

Thus, we can replace τ  by EA/h. 
 

Combining these facts, we can rewrite the first equation of our model (2) 
as 

( )1 1
/ 2i i i i

EA hy y y y
hA + −′′= − +

ρ
 

leaving us with the model 
 

 

1 1
2

0

2 1 1,

0,
.

i i i
i

n

y y yEy i n
h
y
y L

+ −⎛ ⎞ − +′′= ≤ ≤ −⎜ ⎟ρ⎝ ⎠
=
=

 (3) 

 
For a particular solid, the values of E and ρ  can be determined by 

consulting a table of physical constants. For instance, for copper, 
9 2130 10 kg/m sE = ×  and 3 = 8933 kg/mρ . 

 

Section 3: Numerical Methods for the Compression Wave Model 
 

To solve this problem, let us choose a time step k , and define the time 
steps jt jk= , which is the time j  time steps after 0t = . Denote the position of 

disc i  at time jt  by ( ) ,i j i jy t y= .  

 
Taylor’s Theorem tells us that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )544
24
13

6
12

2
1 kOktyktyktyktytykty jijijijijiji ++′′′+′′+′+=+  

while 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )544

24
13

6
12

2
1 kOktyktyktyktytykty jijijijijiji ++′′′−′′+′−=− . 

Thus, if we add these and simplify, we see that 

( ) ( ) ( ) ( ) ( )1 1 2
2

2i j i j i j
i j

y t y t y t
y t O k

k
+ −− +

′′ = +  
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or 

( ) ( ), 1 , , 1 2
2

2
.i j i j i j

i j

y y y
y t O k

k
+ −− +

′′ = +  

Substituting this into (3), we obtain 

( ), 1 , , 1 1, , 1,
2 2

2 2
.i j i j i j i j i j i j

i j

y y y y y yEy t
k h

+ − + −− + − +⎛ ⎞′′≈ = ⎜ ⎟ρ⎝ ⎠
 

Thus if we set    
2E k

h
⎛ ⎞λ = ⎜ ⎟ρ ⎝ ⎠

 

we obtain the equation 
 ( ), 1 , , 1 1, , 1,2 2 .i j i j i j i j i j i jy y y y y y+ − + −− + = λ − +  (4) 

 
If we know the values of iy  at some time jt  and at the prior time 1jt − , then 

we can use (4)  to determine the values of iy  at the next time 1jt + .  
Indeed if 1 1i n≤ ≤ −  then 

( ), 1 1, , 1, , 12 1 .i j i j i j i j i jy y y y y+ + − −= λ + − λ + λ −  

while the boundary conditions in (3) yield 
( )
( )

0, 1

, 1

0,

.
j

n j

y t

y t L
+

+

=

=
 

 
To use this algorithm, we need to know the position of the discs at time 

0 0t =  and at time 1t k= , because with this information we can calculate the 

position of the discs at time 2t and at subsequent times. We can require that the 

user specify the initial position of all of the discs, giving us the position of the 
discs at time 0t , but how can we determine the position of the discs at time 1t ? It 

would be unnatural to specify these values, because we want to be able to modify 
the value of k . 
 

We require the user also specify the velocity of all of the discs at time 

0 0t = . In particular, let iv  be the velocity of disc i  at time 0 0t = . We shall then 

use this information to determine the position of the discs at time 1t . The 

algorithm then determines the position of the discs at all later times. 
 

To find the position of disc i  at time 1t k= , we shall apply Taylor’s 

Theorem. Thus 
( ) ( ) ( ) ( ) ( )2 31

20 0 0 .i i i iy k y ky k y O k′ ′′= + + +  

On the other hand, equation (3) at 0t =  tells us that  

( ) 1,0 ,0 1,0
2

2
0 .i i i

i

y y yEy
h

+ −− +⎛ ⎞′′ = ⎜ ⎟ρ⎝ ⎠
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Combining these, we then find that 

( ) ( )
2

3
,1 ,0 1,0 ,0 1,0

1 2 .
2i i i i i i

E ky y kv y y y O k
h + −

⎛ ⎞= + + − + +⎜ ⎟ρ ⎝ ⎠
 

Thus, knowing the positions ,0iy  and the velocities iv  at time 0 0t = , we find the 

position at time 1t k=  for 1 1i n≤ ≤ −  by  

 ( ),1 1,0 ,0 1,01 .
2 2i i i i iy y y y kv+ −
λ λ

= + − λ + +  (5) 

 

Section 4: Partial Derivatives 
 

Our model for the compression wave is 
1 1

2

2 .i i i
i

y y yEy
h

+ −⎛ ⎞ − +′′= ⎜ ⎟ρ⎝ ⎠
 

and we approximated the left side by 

( ) ( ) ( ) ( )1 1
2

2i j i j i j
i j

y t y t y t
y t

k
+ −− +

′′ ≈  

so that 

( ), 1 , , 1 1, , 1,
2 2

2 2
.i j i j i j i j i j i j

i j

y y y y y yEy t
k h

+ − + −− + − +⎛ ⎞′′≈ = ⎜ ⎟ρ⎝ ⎠
 

The similarity between the left side and right side makes one think that there is 
some relationship between them. 
 

Let ( ),y x t  be a function of the two variables x  and t . If we were to treat x  

as a constant, then the result is a function of one variable ( ),t y x ta . Because 

this is a function of one variable, we can take its derivative. We call the result the 

partial derivative of y  with respect to t , and denote it by either ty   or .y
t

∂
∂

 

Similarly, if we hold t  fixed and consider the result a function of the one variable 
x , we can differentiate the result to obtain partial derivative of y  with respect to 

x , which we denote xy  or 
y
x

∂
∂

. 

 
In the previous section we proved that 

( ) ( ) ( ) ( ) ( )1 1 2
2

2i j i j i j
i j

y t y t y t
y t O k

k
+ −− +

′′ = + , 

so in the language of partial derivatives we have shown that 

( ) ( ), 1 , , 1 2
2

2
, i j i j i j

tt i j

y y y
y x t O k

k
+ −− +

= + . 

On the other hand, if we fix t  and let x  be the variable, Taylor’s theorem says 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 51 1 1
2 6 24, , , , , ,i j i j x i j xx i j xxx i j xxxx i jy x h t y x t y x t h y x t h y x t h y x t O h+ = + + + + +

while 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 51 1 1
2 6 24, , , , , ,i j i j x i j xx i j xxx i j xxxx i jy x h t y x t y x t h y x t h y x t h y x t O h− = − + − + +  

Adding, we see that 

( ) ( )1, , 1, 2
2

2
,i j i j i j

xx i j

y y y
y x t O h

h
+ −− +

= +  

 
Thus our model appears to be an approximation of the equation 

.tt xx
Ey y⎛ ⎞

= ⎜ ⎟ρ⎝ ⎠
 

This is a partial differential equation, called the wave equation. Our finite 
difference method that we have learned is a way to approximate solutions of the 
wave equation. 
 

Section 5: Transverse Waves 
 

Now that we have examined the behavior of compression waves, let us 
discuss the behavior of transverse waves. In particular, let us examine a vibrating 
string. 
 

To model this, begin by assuming that the position of the string can be 
modeled by a function ( ),u x t , which describes the height of the string at position 

x  and at time t . 

Examine the portion of the string between two points, say x a= , and 
x b= . The forces acting on this portion of the string are the tension at x a=  and 
the tension at x b= . Let ( ),T x t  be the tension in the string at a point x  at time t . 

Because the tension is the force exerted by the rest of the string, it must act in the 
direction that is tangent to the position of the string at that point. 
 

To find the tension at the point x b= , let α  be the angle between the 
tangent line to ( ),u x t  at x b=  and a horizontal line. The slope of ( ),u x t  at time t  

and position x b=  is ( ),xu b t . Thus, to find the angle α , we draw a right triangle 

u(x,t) 

0x =  x L=

Figure 7: A vibrating string 
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whose hypotenuse has slope ( ),xu b t , and we see that 
2

sin
1

x

x

u

u
α =

+
and 

2

1cos
1 xu

α =
+

. 

 
Combining these facts, we find that the horizontal component of the 

tension T at x = b is  
( )

( )2

,

1 ,x

T b t

u b t+
 

while the vertical component is 

( ) ( )
( )2

,
, .

1 ,
x

x

u b t
T b t

u b t+
 

 

Repeating the previous process at x a= , we find that the total horizontal 
force on the portion of the string between x a=  and x b=  is 

( )
( )

( )
( )2 2

, ,
.

1 , 1 ,x x

T b t T a t

u b t u a t
−

+ +
 

If we assume that the string moves only up and down, we know that there can be 
no horizontal force on the portion of the string between x a=  and x b= ; thus 

( )
( )

( )
( )2 2

, ,
0.

1 , 1 ,x x

T b t T a t

u b t u a t
− =

+ +
 

We conclude that there is a value 0T  so that 
 

( )
( ) 02

,

1 ,x

T x t
T

u x t
=

+
 

for all values of x, for each time t. For simplicity, we also assume that 0T  does not 

change with time, and hence is constant. 
 
The vertical component of the tension force on the portion of the string 

between x a=  and x b=  is 

( ) ( )
( )

( ) ( )
( )2 2

, ,
, ,

1 , 1 ,
x x

x x

u b t u a t
T b t T a t

u b t u a t
−

+ +
 

 
which can be simplified to 

( ) ( )0 , , .x xT u b t u a t−⎡ ⎤⎣ ⎦  
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We shall rewrite this with the aid of the Fundamental Theorem of Calculus as 

( )0 , .
b

xxa
T u x t dx∫  

 
We know from Newton’s law that F ma= . Since we know the force on the 

portion of the string between x a=  and x b= , let us try to determine the 
acceleration of that portion of the string. 
 

We immediately see a problem- different portions of the string are moving  
at different velocities, and have different accelerations. However, suppose we 
take some infinitesimally small part of the string, of width dx . On this portion of 
the string, the acceleration of the string is ( ),ttu x t , and the mass is dxρ , where ρ  

is the density of the string per unit length. Thus, for this infinitesimally small 
part, we can write ma as ( ),ttu x t dxρ . Adding up the contributions for each 

inifintesimal piece between x a=  and x b= , we obtain 

( ), .
b

tta
u x t dxρ∫  

 
Combining these results, we see that for every choice of a and b,  

( ) ( )0 , , .
b b

xx tta a
T u x t dx u x t dx= ρ∫ ∫  

Thus 

( ) ( )0, , 0.
b

tt xxa
u x t T u x t dxρ − =⎡ ⎤⎣ ⎦∫  

This says that the area under ( ) ( )0, ,tt xxu x t T u x tρ −  between any two points x a=  

and x b=  is zero. The only way that this can occur is if the function xxtt uTu 0−ρ  is 

always zero. 
 

As a consequence, we conclude that 
0 .tt xx

Tu u⎛ ⎞
= ⎜ ⎟ρ⎝ ⎠

 

Note that, aside from the constant factors, this is the same equation as the 
equation for a compression wave, 

.tt xx
Ey y⎛ ⎞

= ⎜ ⎟ρ⎝ ⎠
 

 
For this reason, equations of the form 

.tt xxy cy=  

for 0c >  are called a wave equations.  
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Section 6: Speed of Propagation and the Stability of the Numerical 
Method 
 
 The wave equation has an interesting property. Let ( )f x  be any twice 

differentiable function. Then the functions 

( ) ( ),y x t f x ct= −  

and 

( ) ( ),y x t f x ct= −  

both satisfy the wave equation; this can be verified by direct substitution. For 
each time t , these solutions are translations of the function ( ),0y x . Moreover, at 

time t , these solutions have been translated by a distance ct . Thus, the velocity 

of these solutions is /ct t c= . These are called traveling wave solutions of the 
wave equation.  
 
 The fact that traveling wave solutions of the wave equation move at the 
particular velocity c   has a dramatic effect on the choice of the parameters in 
our numerical method. Indeed let the spatial grid size h  and the time step k  be 

chosen. The value of the solution at ( )1,i jx t +  depends on the values of the solution 

at ( )1,i jx t− , ( ),i jx t , and ( )1,i jx t+ . Thus, the velocity of the numerical solution is at 

most / /x t h k∆ ∆ = . If the numerical method is to be accurate, then it needs to 
move information between the grid points at least as quickly as the actual 
solution. This translates to the requirement that h

k c≥ , or equivalently the 

restriction 
k ch≤ . 

Although the argument underlying this requirement can be challenged, the result 
is true.  

Note to the Instructor 
 
 One could replace the heuristic argument of Section 6 with a rigorous 
argument based on von Neumann analysis. See the chapter on diffusion problems 
for the relevant details. 
 

Project 
 
 Write a C++ program that simulates the motion of a vibrating string. 
 

As input, the program should take 
• The values of the solution at the endpoints 



 

• The ratio of tension to density 0 /T ρ  

• The user should be able to use the mouse to determine the initial data. 
• The step size for the simulation. 
• The total time for the simulation. 

 
As output, the program should return 
• An animation of the resulting motion of the string. 

 
The program should be written using good object oriented programming 

techniques. 
 
You are then to answer the following questions 
 1. Consider a string of length 100cmL = with 0 / 10 N m / kgT ρ = ⋅ . Suppose 

that the string is initially at rest, the endpoints are held fixed, but initially is 
stretched as follows.  

 
• What is the position
• Describe in words t
 
2. Consider a string of 

initially that ( ) ( ),0 ,0ty x y x=

( )0, siny t t=  and the right end

• What is the positio
• Describe in words t

 

0x =
100x =

20y =

 
Figure 8: A stretched string
198

 of the string when 1t = ? 
he motion of the string. 

length 100cmL = with 0 / 10 N m / kgT ρ = ⋅ . Suppose 

0= , but that the left end oscillates so that 

 is held fixed. 

n of the string when 1t = ? 
he motion of the string. 
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